python: 压缩图片.webp
pip install imageio
1 2 | image = imageio.imread( "1.jpg" ) imageio.imwrite( "output_image.webp" , image, "WEBP" ) |
1 2 3 4 5 6 7 8 9 10 | # 代码示例:使用Python的Keras库构建Autoencoder模型 from keras.models import Model from keras.layers import Input , Dense input_img = Input (shape = ( 784 ,)) encoded = Dense( 128 , activation = 'relu' )(input_img) decoded = Dense( 784 , activation = 'sigmoid' )(encoded) autoencoder = Model(input_img, decoded) autoencoder. compile (optimizer = 'adam' , loss = 'binary_crossentropy' ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | rows, cols = ( 10 , 10 ) # 创建一个真正的二维数组 F = [[ 0 for _ in range (cols)] for _ in range (rows)] n = int ( input ( '请输入数字:' )) y = 0 while y < rows: x = 0 while x < cols: for i in range (y, y + n): for j in range (x, x + n): if (i< = 9 and j< = 9 ): F[i][j] = 1 x + = n * 2 # 用于每个隔一个相同的距离x 的坐标 y + = n * 2 # 用于每个隔一个相同的距离y的坐标 #打印效果 for row in F: for col in row: print (col, end = " " ) print () |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | rows, cols = ( 10 , 10 ) # 创建一个真正的二维数组 F = [[ 0 for _ in range (cols)] for _ in range (rows)] n = int ( input ( '请输入数字:' )) y = 0 while y < rows: x = 0 while x < cols: for i in range (y, min (y + n, rows)): for j in range (x, min (x + n, cols)): F[i][j] = 1 x + = n * 2 # 用于每个隔一个相同的距离x 的坐标 y + = n * 2 # 用于每个隔一个相同的距离y的坐标 #打印效果 for row in F: for col in row: print (col, end = " " ) print () letter_array = [ "JGJGDDAOYD" , "IDGFHSPOSA" , "FGDIOSAFSC" , "INTERNETSO" , "FJKCOSAFSM" , "DJSGAPAHDP" , "HAUSTRFBFU" , "KDGFUCNSKT" , "WSJDYCFXDE" , "ODVFKXJVCR" ] word = input ( "请输入单词: " ) word = word.upper() find = False if not letter_array or not word: print ( "输入的单词为空或字符串数组为空。" ) else : rows = len (letter_array) word_length = len (word) # 遍历所有行 for row in letter_array: # 在每一行中,从左到右滑动单词长度的窗口 for start_col in range ( len (row) - word_length + 1 ): # 检查当前窗口的字符串是否与单词匹配 if row[start_col:start_col + word_length] = = word: find = True # 如果在某一行的窗口中找到单词,则返回True break # 找到单词后立即退出循环 if find: break # 找到单词后立即退出循环 if find: print (f "单词 '{word}' 存在于字符串数组的行线上。" ) else : print (f "单词 '{word}' 不存在于字符串数组的任何行线上。" ) letter_array = [ "JGJGDDAOYD" , "IDGFHSPOSA" , "FGDIOSAFSC" , "INTERNETSO" , "FJKCOSAFSM" , "DJSGAPAHDP" , "HAUSTRFBFU" , "KDGFUCNSKT" , "WSJDYCFXDE" , "ODVFKXJVCR" ] word = input ( "请输入单词: " ) word = word.upper() rows = len (letter_array) cols = len (letter_array[ 0 ]) if rows > 0 else 0 word_length = len (word) find = False # 检查所有可能的起始位置 for i in range (rows): for j in range (cols): # 检查当前位置是否在数组的边界内,如果这个单词可以放在对角线上 if i + word_length < = rows and j + word_length < = cols: # 检查单词是否与对角线匹配 match = True for k in range (word_length): if letter_array[i + k][j + k] ! = word[k]: match = False break if match: find = True break # 找到匹配后立即停止搜索 if find: break # 找到匹配后立即停止搜索 if find: print (f "单词 '{word}' 存在于字符串数组的对角线上。" ) else : print (f "单词 '{word}' 不存在于字符串数组的任何对角线上。" ) letter_array = [ "JGJGDDAOYD" , "IDGFHSPOSA" , "FGDIOSAFSC" , "INTERNETSO" , "FJKCOSAFSM" , "DJSGAPAHDP9" , "HAUSTRFBFU" , "KDGFUCNSKT" , "WSJDYCFXDE" , "ODVFKXJVCR" ] word = "CAR" word = input ( "please enter word:" ) word = word.upper() rows = len (letter_array) cols = len (letter_array[ 0 ]) if rows > 0 else 0 find = False # 所有可能的index起始位置 for i in range (rows): for j in range (cols): # 检查当前位置是否在数组的边界内 # ,如果这个单词可以放在index上 if i + len (word) < = rows and j + len (word) < = cols: # 检查单词是否与index匹配 match = True for k in range ( len (word)): if letter_array[i + k][j + k] ! = word[k]: match = False break if match: find = True if find: print (f "The word '{word}' exists in the letter array as a diagonal." ) else : print (f "The word '{word}' does not exist in the letter array as a diagonal." ) letter_array = [ "JGJGDDAOYD" , "IDGFHSPOSA" , "FGDIOSAFSC" , "INTERNETSO" , "FJKCOSAFSM" , "DJSGAPAHDP" , "HAUSTRFBFU" , "KDGFUCNSKT" , "WSJDYCFXDE" , "ODVFKXJVCR" ] word = "MPUTER" # 在一列部分的位置 word = input ( "输入要在列中查找的单词" ) # 转换为大写以便与letter_array中的字符进行比较 word = word.upper() find = False if not letter_array or not word: find = False cols = len (letter_array[ 0 ]) rows = len (letter_array) word_length = len (word) # 遍历所有列 for j in range (cols): # 在每一列中,从顶部到底部滑动单词长度的窗口 for start_row in range (rows - word_length + 1 ): # 检查当前窗口的字符串是否与单词匹配 match = True for i in range (word_length): if letter_array[start_row + i][j] ! = word[i]: match = False break if match: find = True # 如果在某一列的窗口中找到单词,则返回True if find: print (f "The word Part '{word}' exists in the letter array as a column." ) else : print (f "The word Part '{word}' does not exist in the letter array as a column." ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | rows, cols = ( 10 , 10 ) F = [[ 0 for _ in range (cols)] for _ in range (rows)] n = int ( input ( "please number:" )) y = 0 while y < rows: x = 0 while x < cols: for i in range (y, y + n ): for j in range (x, x + n): if i < = 9 and j < = 9 : F[i][j] = 1 x + = n * 2 y + = n * 2 # 打印效果 for row in F: for col in row: print (col, end = " " ) print () rows, cols = ( 10 , 10 ) # 创建一个真正的二维数组 F = [[ 0 for _ in range (cols)] for _ in range (rows)] n = int ( input ( '请输入数字:' )) y = 0 while y < rows: x = 0 while x < cols: for i in range (y, min (y + n,rows)): for j in range (x, min (x + n,cols)): F[i][j] = 1 x + = n * 2 # 用于每个隔一个相同的距离x 的坐标 y + = n * 2 # 用于每个隔一个相同的距离y的坐标 #打印效果 for row in F: for col in row: print (col, end = " " ) print () |
哲学管理(学)人生, 文学艺术生活, 自动(计算机学)物理(学)工作, 生物(学)化学逆境, 历史(学)测绘(学)时间, 经济(学)数学金钱(理财), 心理(学)医学情绪, 诗词美容情感, 美学建筑(学)家园, 解构建构(分析)整合学习, 智商情商(IQ、EQ)运筹(学)生存.---Geovin Du(涂聚文)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 零经验选手,Compose 一天开发一款小游戏!
· 一起来玩mcp_server_sqlite,让AI帮你做增删改查!!