CSharp: SunTimeCalculator
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 | using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace GeovinDu.Ticket.Common { /// <summary> /// /// </summary> public static class DateTimeJavaScriptExt { /// <summary> /// Based on a JavaScript library SunCalc for calculating sun/moon position and light phases. ///https://github.com/mourner/suncalc /// </summary> /// <param name="dt"></param> /// <returns></returns> public static double ValueOf( this DateTime dt) // JavaScript Date.valueOf() { dt = dt.Kind == DateTimeKind.Local ? dt.ToUniversalTime() : dt; return (dt - new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds; } /// <summary> /// /// </summary> /// <param name="dt"></param> /// <param name="ms"></param> /// <returns></returns> public static DateTime FromJScriptValue( this DateTime dt, double ms) { return new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc).AddMilliseconds(ms); } } /// <summary> /// 计算日出日落时间,月升月落时间 /// /// </summary> public class SunTimeCalculator { #region 辅助函数 /// <summary> /// 历元2000.0,即以2000年第一天开端为计日起始(天文学以第一天为0日而非1日)。 /// 它与UT(就是世界时,格林尼治平均太阳时)1999年末重合。 /// </summary> /// <param name="y"></param> /// <param name="m"></param> /// <param name="d"></param> /// <returns></returns> private static long Days_since_2000_Jan_0( int y, int m, int d) { return (367L * (y) - ((7 * ((y) + (((m) + 9) / 12))) / 4) + ((275 * (m)) / 9) + (d) - 730530L); } /// <summary> /// /// </summary> /// <param name="x"></param> /// <returns></returns> private static double Revolution( double x) { return (x - 360.0 * Math.Floor(x * Inv360)); } /// <summary> /// /// </summary> /// <param name="x"></param> /// <returns></returns> private static double Rev180( double x) { return (x - 360.0 * Math.Floor(x * Inv360 + 0.5)); } /// <summary> /// /// </summary> /// <param name="d"></param> /// <returns></returns> private static double GMST0( double d) { double sidtim0; sidtim0 = Revolution((180.0 + 356.0470 + 282.9404) + (0.9856002585 + 4.70935E-5) * d); return sidtim0; } /// <summary> /// /// </summary> private static double Inv360 = 1.0 / 360.0; #endregion #region 度与弧度转换系数,为球面三角计算作准备 /// <summary> /// /// </summary> /// <param name="x"></param> /// <returns></returns> private static double Sind( double x) { return Math.Sin(x * Degrad); } /// <summary> /// /// </summary> /// <param name="x"></param> /// <returns></returns> private static double Cosd( double x) { return Math.Cos(x * Degrad); } /// <summary> /// /// </summary> /// <param name="x"></param> /// <returns></returns> private static double Tand( double x) { return Math.Tan(x * Degrad); } /// <summary> /// /// </summary> /// <param name="x"></param> /// <returns></returns> private static double Atand( double x) { return Radge * Math.Atan(x); } /// <summary> /// /// </summary> /// <param name="x"></param> /// <returns></returns> private static double Asind( double x) { return Radge * Math.Asin(x); } /// <summary> /// /// </summary> /// <param name="x"></param> /// <returns></returns> private static double Acosd( double x) { return Radge * Math.Acos(x); } /// <summary> /// /// </summary> /// <param name="y"></param> /// <param name="x"></param> /// <returns></returns> private static double Atan2d( double y, double x) { return Radge * Math.Atan2(y, x); } /// <summary> /// /// </summary> private static double Radge = 180.0 / Math.PI; /// <summary> /// /// </summary> private static double Degrad = Math.PI / 180.0; #endregion #region 与日出日落时间相关计算 /// <summary> /// /// </summary> /// <param name="year"></param> /// <param name="month"></param> /// <param name="day"></param> /// <param name="lon"></param> /// <param name="lat"></param> /// <param name="altit"></param> /// <param name="upper_limb"></param> /// <returns></returns> private static double DayLen( int year, int month, int day, double lon, double lat, double altit, int upper_limb) { double d, /* Days since 2000 Jan 0.0 (negative before) */ obl_ecl, /* Obliquity (inclination) of Earth's axis */ //黄赤交角,在2000.0历元下国际规定为23度26分21.448秒,但有很小的时间演化。 sr, /* Solar distance, astronomical units */ slon, /* True solar longitude */ sin_sdecl, /* Sine of Sun's declination */ //太阳赤纬的正弦值。 cos_sdecl, /* Cosine of Sun's declination */ sradius, /* Sun's apparent radius */ t; /* Diurnal arc */ /* Compute d of 12h local mean solar time */ d = Days_since_2000_Jan_0(year, month, day) + 0.5 - lon / 360.0; /* Compute obliquity of ecliptic (inclination of Earth's axis) */ obl_ecl = 23.4393 - 3.563E-7 * d; //这个黄赤交角时变公式来历复杂,很大程度是经验性的,不必追究。 /* Compute Sun's position */ slon = 0.0; sr = 0.0; Sunpos(d, ref slon, ref sr); /* Compute sine and cosine of Sun's declination */ sin_sdecl = Sind(obl_ecl) * Sind(slon); cos_sdecl = Math.Sqrt(1.0 - sin_sdecl * sin_sdecl); //用球面三角学公式计算太阳赤纬。 /* Compute the Sun's apparent radius, degrees */ sradius = 0.2666 / sr; //视半径,同前。 /* Do correction to upper limb, if necessary */ if (upper_limb != 0) altit -= sradius; /* Compute the diurnal arc that the Sun traverses to reach */ /* the specified altitide altit: */ //根据设定的地平高度判据计算周日弧长。 double cost; cost = (Sind(altit) - Sind(lat) * sin_sdecl) / (Cosd(lat) * cos_sdecl); if (cost >= 1.0) t = 0.0; /* Sun always below altit */ //极夜。 else if (cost <= -1.0) t = 24.0; /* Sun always above altit */ //极昼。 else t = (2.0 / 15.0) * Acosd(cost); /* The diurnal arc, hours */ //周日弧换算成小时计。 return t; } /// <summary> /// /// </summary> /// <param name="d"></param> /// <param name="lon"></param> /// <param name="r"></param> private static void Sunpos( double d, ref double lon, ref double r) { double M, //太阳的平均近点角,从太阳观察到的地球(=从地球看到太阳的)距近日点(近地点)的角度。 w, //近日点的平均黄道经度。 e, //地球椭圆公转轨道离心率。 E, //太阳的偏近点角。计算公式见下面。 x, y, v; //真近点角,太阳在任意时刻的真实近点角。 M = Revolution(356.0470 + 0.9856002585 * d); //自变量的组成:2000.0时刻太阳黄经为356.0470度,此后每天约推进一度(360度/365天 w = 282.9404 + 4.70935E-5 * d; //近日点的平均黄经。 e = 0.016709 - 1.151E-9 * d; //地球公转椭圆轨道离心率的时间演化。以上公式和黄赤交角公式一样,不必深究。 E = M + e * Radge * Sind(M) * (1.0 + e * Cosd(M)); x = Cosd(E) - e; y = Math.Sqrt(1.0 - e * e) * Sind(E); r = Math.Sqrt(x * x + y * y); v = Atan2d(y, x); lon = v + w; if (lon >= 360.0) lon -= 360.0; } /// <summary> /// /// </summary> /// <param name="d"></param> /// <param name="RA"></param> /// <param name="dec"></param> /// <param name="r"></param> private static void Sun_RA_dec( double d, ref double RA, ref double dec, ref double r) { double lon, obl_ecl, x, y, z; lon = 0.0; Sunpos(d, ref lon, ref r); //计算太阳的黄道坐标。 x = r * Cosd(lon); y = r * Sind(lon); //计算太阳的直角坐标。 obl_ecl = 23.4393 - 3.563E-7 * d; //黄赤交角,同前。 z = y * Sind(obl_ecl); y = y * Cosd(obl_ecl); //把太阳的黄道坐标转换成赤道坐标(暂改用直角坐标)。 RA = Atan2d(y, x); dec = Atan2d(z, Math.Sqrt(x * x + y * y)); //最后转成赤道坐标。显然太阳的位置是由黄道坐标方便地直接确定的,但必须转换到赤 //道坐标里才能结合地球的自转确定我们需要的白昼长度。 } /// <summary> /// 日出没时刻计算 /// </summary> /// <param name="year">年</param> /// <param name="month">月</param> /// <param name="day">日</param> /// <param name="lon">经度</param> /// <param name="lat">纬度</param> /// <param name="altit"></param> /// <param name="upper_limb"></param> /// <param name="trise">日出时刻</param> /// <param name="tset">日没时刻</param> /// <returns>太阳有出没现象,返回0 极昼,返回+1 极夜,返回-1</returns> private static int SunRiset( int year, int month, int day, double lon, double lat, double altit, int upper_limb, ref double trise, ref double tset) { double d, /* Days since 2000 Jan 0.0 (negative before) */ //以历元2000.0起算的日数。 sr, /* Solar distance, astronomical units */ //太阳距离,以天文单位计算(约1.5亿公里)。 sRA, /* Sun's Right Ascension */ //同前,太阳赤经。 sdec, /* Sun's declination */ //太阳赤纬。 sradius, /* Sun's apparent radius */ //太阳视半径,约16分(受日地距离、大气折射等诸多影响) t, /* Diurnal arc */ //周日弧,太阳一天在天上走过的弧长。 tsouth, /* Time when Sun is at south */ sidtime; /* Local sidereal time */ //当地恒星时,即地球的真实自转周期。比平均太阳日(日常时间)长3分56秒。 int rc = 0; /* Return cde from function - usually 0 */ /* Compute d of 12h local mean solar time */ d = Days_since_2000_Jan_0(year, month, day) + 0.5 - lon / 360.0; //计算观测地当日中午时刻对应2000.0起算的日数。 /* Compute local sideral time of this moment */ sidtime = Revolution(GMST0(d) + 180.0 + lon); //计算同时刻的当地恒星时(以角度为单位)。以格林尼治为基准,用经度差校正。 /* Compute Sun's RA + Decl at this moment */ sRA = 0.0; sdec = 0.0; sr = 0.0; Sun_RA_dec(d, ref sRA, ref sdec, ref sr); //计算同时刻太阳赤经赤纬。 /* Compute time when Sun is at south - in hours UT */ tsouth = 12.0 - Rev180(sidtime - sRA) / 15.0; //计算太阳日的正午时刻,以世界时(格林尼治平太阳时)的小时计。 /* Compute the Sun's apparent radius, degrees */ sradius = 0.2666 / sr; //太阳视半径。0.2666是一天文单位处的太阳视半径(角度)。 /* Do correction to upper limb, if necessary */ if (upper_limb != 0) altit -= sradius; //如果要用上边缘,就要扣除一个视半径。 /* Compute the diurnal arc that the Sun traverses to reach */ //计算周日弧。直接利用球面三角公式。如果碰到极昼极夜问题,同前处理。 /* the specified altitide altit: */ double cost; cost = (Sind(altit) - Sind(lat) * Sind(sdec)) / (Cosd(lat) * Cosd(sdec)); if (cost >= 1.0) { rc = -1; t = 0.0; } else { if (cost <= -1.0) { rc = +1; t = 12.0; /* Sun always above altit */ } else t = Acosd(cost) / 15.0; /* The diurnal arc, hours */ } /* Store rise and set times - in hours UT */ trise = tsouth - t; tset = tsouth + t; return rc; } #endregion /// <summary> /// 计算日出日没时间 /// </summary> /// <param name="date"></param> /// <param name="longitude">经度</param> /// <param name="latitude">纬度</param> /// <returns></returns> public static SunTimeResult GetSunTime(DateTime date, double longitude, double latitude) { double start = 0; double end = 0; SunRiset(date.Year, date.Month, date.Day, longitude, latitude, -35.0 / 60.0, 1, ref start, ref end); DateTime sunrise = ToLocalTime(date, start); DateTime sunset = ToLocalTime(date, end); return new SunTimeResult(sunrise, sunset); } #region moon 月亮计算 private const double dayMs = 86400000; private const double J1970 = 2440588; private const double J2000 = 2451545; private const double PI = Math.PI; private const double rad = Math.PI / 180.0; private const double e = rad * 23.4397; // obliquity of the Earth /// <summary> /// /// </summary> public class SunTime { public double Angle { get ; set ; } public string MorningName { get ; set ; } public string EveningName { get ; set ; } } /// <summary> /// /// </summary> public class SunTimeRiseSet : SunTime { public DateTime RiseTime { get ; set ; } public DateTime SetTime { get ; set ; } } /// <summary> /// sun times configuration (angle, morning name, evening name) /// </summary> public static List<SunTime> SunTimes = new List<SunTime>( new SunTime[] { new SunTime { Angle = -0.833, MorningName = "sunrise" , EveningName = "sunset" }, new SunTime { Angle = -0.3, MorningName = "sunriseEnd" , EveningName = "sunsetStart" }, new SunTime { Angle = -6, MorningName = "dawn" , EveningName = "dusk" }, new SunTime { Angle = -12, MorningName = "nauticalDawn" , EveningName = "nauticalDusk" }, new SunTime { Angle = -18, MorningName = "nightEnd" , EveningName = "night" }, new SunTime { Angle = 6, MorningName = "goldenHourEnd" , EveningName = "goldenHour" } }); /// <summary> /// adds a custom time to the times config /// </summary> /// <param name="sunTime"></param> public static void AddTime(SunTime sunTime) { SunTimes.Add(sunTime); } /// <summary> /// /// </summary> public class RaDec { public double ra = 0; public double dec = 0; } /// <summary> /// /// </summary> /// <param name="dt"></param> /// <returns></returns> public static double ToJulianDate(DateTime dt) { dt = dt.Kind == DateTimeKind.Local ? dt.ToUniversalTime() : dt; return (dt - new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds / dayMs - 0.5 + J1970; } /// <summary> /// /// </summary> /// <param name="jd"></param> /// <returns></returns> public static DateTime FromJulianDate( double jd) { return double .IsNaN(jd) ? DateTime.MinValue : new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc).AddMilliseconds((jd + 0.5 - J1970) * dayMs); } /// <summary> /// /// </summary> /// <param name="dt"></param> /// <returns></returns> public static double JulianDays(DateTime dt) { dt = dt.Kind == DateTimeKind.Local ? dt.ToUniversalTime() : dt; return ToJulianDate(dt) - J2000; } /// <summary> /// /// </summary> /// <param name="l"></param> /// <param name="b"></param> /// <returns></returns> public static double RightAscension( double l, double b) { return Math.Atan2(Math.Sin(l) * Math.Cos(e) - Math.Tan(b) * Math.Sin(e), Math.Cos(l)); } public static double Declination( double l, double b) { return Math.Asin(Math.Sin(b) * Math.Cos(e) + Math.Cos(b) * Math.Sin(e) * Math.Sin(l)); } /// <summary> /// /// </summary> /// <param name="H"></param> /// <param name="phi"></param> /// <param name="dec"></param> /// <returns></returns> public static double Azimuth( double H, double phi, double dec) { return Math.Atan2(Math.Sin(H), Math.Cos(H) * Math.Sin(phi) - Math.Tan(dec) * Math.Cos(phi)); } /// <summary> /// /// </summary> /// <param name="H"></param> /// <param name="phi"></param> /// <param name="dec"></param> /// <returns></returns> public static double Altitude( double H, double phi, double dec) { return Math.Asin(Math.Sin(phi) * Math.Sin(dec) + Math.Cos(phi) * Math.Cos(dec) * Math.Cos(H)); } /// <summary> /// /// </summary> /// <param name="d"></param> /// <param name="lw"></param> /// <returns></returns> public static double SiderealTime( double d, double lw) { return rad * (280.16 + 360.9856235 * d) - lw; } /// <summary> /// /// </summary> /// <param name="h"></param> /// <returns></returns> public static double AstroRefraction( double h) { if (h < 0) // the following formula works for positive altitudes only. { h = 0; // if h = -0.08901179 a div/0 would occur. } // formula 16.4 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998. // 1.02 / tan(h + 10.26 / (h + 5.10)) h in degrees, result in arc minutes -> converted to rad: return 0.0002967 / Math.Tan(h + 0.00312536 / (h + 0.08901179)); } /// <summary> /// general sun calculations /// </summary> /// <param name="d"></param> /// <returns></returns> public static double SolarMeanAnomaly( double d) { return rad * (357.5291 + 0.98560028 * d); } /// <summary> /// /// </summary> /// <param name="dt"></param> /// <param name="h"></param> /// <returns></returns> public static DateTime HoursLater(DateTime dt, double h) { return new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc).AddMilliseconds(dt.ValueOf() + h * dayMs / 24); //ValueOf } /// <summary> /// /// </summary> /// <param name="M"></param> /// <returns></returns> public static double EclipticLongitude( double M) { double C = rad * (1.9148 * Math.Sin(M) + 0.02 * Math.Sin(2 * M) + 0.0003 * Math.Sin(3 * M)); // equation of center double P = rad * 102.9372; // perihelion of the Earth return M + C + P + PI; } /// <summary> /// /// </summary> /// <param name="d"></param> /// <returns></returns> public static RaDec SunCoords( double d) { double M = SolarMeanAnomaly(d); double L = EclipticLongitude(M); return new RaDec { dec = Declination(L, 0), ra = RightAscension(L, 0) }; } /// <summary> /// /// </summary> public class MoonRaDecDist { public double ra = 0; public double dec = 0; public double dist = 0; } /// <summary> /// /// </summary> /// <param name="d"></param> /// <returns></returns> public static MoonRaDecDist MoonCoords( double d) // geocentric ecliptic coordinates of the moon { double L = rad * (218.316 + 13.176396 * d); // ecliptic longitude double M = rad * (134.963 + 13.064993 * d); // mean anomaly double F = rad * (93.272 + 13.229350 * d); // mean distance double l = L + rad * 6.289 * Math.Sin(M); // longitude double b = rad * 5.128 * Math.Sin(F); // latitude double dt = 385001 - 20905 * Math.Cos(M); // distance to the moon in km return new MoonRaDecDist { ra = RightAscension(l, b), dec = Declination(l, b), dist = dt }; } /// <summary> /// /// </summary> public class MoonAzAltDistPa { public double azimuth = 0; public double altitude = 0; public double distance = 0; public double parallacticAngle = 0; } /// <summary> /// /// </summary> public class MoonFracPhaseAngle { public double fraction = 0; public double phase = 0; public double angle = 0; } /// <summary> /// /// </summary> /// <param name="dt"></param> /// <param name="lat"></param> /// <param name="lng"></param> /// <returns></returns> public static MoonAzAltDistPa GetMoonPosition(DateTime dt, double lat, double lng) { double lw = rad * -lng; double phi = rad * lat; double d = JulianDays(dt); MoonRaDecDist c = MoonCoords(d); double H = SiderealTime(d, lw) - c.ra; double h = Altitude(H, phi, c.dec); // formula 14.1 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998. double pa = Math.Atan2(Math.Sin(H), Math.Tan(phi) * Math.Cos(c.dec) - Math.Sin(c.dec) * Math.Cos(H)); h += AstroRefraction(h); // altitude correction for refraction return new MoonAzAltDistPa { azimuth = Azimuth(H, phi, c.dec), altitude = h, distance = c.dist, parallacticAngle = pa }; } /// <summary> /// /// </summary> /// <param name="dt"></param> /// <returns></returns> public static MoonFracPhaseAngle GetMoonIllumination(DateTime dt) { double d = JulianDays(dt); RaDec s = SunCoords(d); MoonRaDecDist m = MoonCoords(d); double sdist = 149598000; // distance from Earth to Sun in km double phi = Math.Acos(Math.Sin(s.dec) * Math.Sin(m.dec) + Math.Cos(s.dec) * Math.Cos(m.dec) * Math.Cos(s.ra - m.ra)); double inc = Math.Atan2(sdist * Math.Sin(phi), m.dist - sdist * Math.Cos(phi)); double angle = Math.Atan2(Math.Cos(s.dec) * Math.Sin(s.ra - m.ra), Math.Sin(s.dec) * Math.Cos(m.dec) - Math.Cos(s.dec) * Math.Sin(m.dec) * Math.Cos(s.ra - m.ra)); return new MoonFracPhaseAngle { fraction = (1 + Math.Cos(inc)) / 2, phase = 0.5 + 0.5 * inc * (angle < 0 ? -1 : 1) / PI, angle = angle }; } /// <summary> /// DateTime.Max = always up, DateTime.Min = always down /// </summary> /// <param name="dt"></param> /// <param name="lat">纬度</param> /// <param name="lng">经度</param> /// <param name="risem"></param> /// <param name="setm"></param> /// <param name="alwaysUp"></param> /// <param name="alwaysDown"></param> public static void MoonRiset(DateTime dt, double lat, double lng, out DateTime risem, out DateTime setm, out bool ? alwaysUp, out bool ? alwaysDown) { dt = new DateTime(dt.Year, dt.Month, dt.Day, 0, 0, 0, DateTimeKind.Utc); DateTime t = dt; double hc = 0.133 * rad; double h0 = GetMoonPosition(t, lat, lng).altitude - hc; double h1, h2, rise = 0, set = 0, a, b, xe, ye = 0, d, x1, x2, dx; int roots; for ( double i = 1.0; i <= 24.0; i += 2.0) { h1 = GetMoonPosition(HoursLater(t, i), lat, lng).altitude - hc; h2 = GetMoonPosition(HoursLater(t, i + 1), lat, lng).altitude - hc; a = (h0 + h2) / 2 - h1; b = (h2 - h0) / 2; xe = -b / (2 * a); ye = (a * xe + b) * xe + h1; d = b * b - 4 * a * h1; roots = 0; if (d >= 0) { dx = Math.Sqrt(d) / (Math.Abs(a) * 2); x1 = xe - dx; x2 = xe + dx; if (Math.Abs(x1) <= 1) { roots++; } if (Math.Abs(x2) <= 1) { roots++; } if (x1 < -1) { x1 = x2; } if (roots == 1) { if (h0 < 0) { rise = i + x1; } else { set = i + x1; } } else if (roots == 2) { rise = i + (ye < 0 ? x2 : x1); set = i + (ye < 0 ? x1 : x2); } if (rise > 0 && set > 0) { break ; } h0 = h2; } } risem = DateTime.MinValue; setm = DateTime.MinValue; if (rise > 0) { risem = HoursLater(t, rise); } if ( set > 0) { setm = HoursLater(t, set ); } alwaysUp = null ; alwaysDown = null ; if (rise < 0 && set < 0) { if (ye > 0) { alwaysUp = true ; alwaysDown = false ; risem = DateTime.MaxValue; setm = DateTime.MaxValue; } else { alwaysDown = true ; alwaysUp = false ; } } } /// <summary> /// /// </summary> /// <param name="year"></param> /// <param name="month"></param> /// <param name="day"></param> /// <param name="lat">纬度</param> /// <param name="lng">经度</param> /// <param name="risem"></param> /// <param name="setm"></param> /// <param name="alwaysUp"></param> /// <param name="alwaysDown"></param> public static void MoonRisetInt( int year, int month, int day, double lat, double lng, out DateTime risem, out DateTime setm, out bool ? alwaysUp, out bool ? alwaysDown) { DateTime dt = new DateTime(year, month, day, 0, 0, 0, DateTimeKind.Utc); DateTime t = dt; double hc = 0.133 * rad; double h0 = GetMoonPosition(t, lat, lng).altitude - hc; double h1, h2, rise = 0, set = 0, a, b, xe, ye = 0, d, x1, x2, dx; int roots; for ( double i = 1.0; i <= 24.0; i += 2.0) { h1 = GetMoonPosition(HoursLater(t, i), lat, lng).altitude - hc; h2 = GetMoonPosition(HoursLater(t, i + 1), lat, lng).altitude - hc; a = (h0 + h2) / 2 - h1; b = (h2 - h0) / 2; xe = -b / (2 * a); ye = (a * xe + b) * xe + h1; d = b * b - 4 * a * h1; roots = 0; if (d >= 0) { dx = Math.Sqrt(d) / (Math.Abs(a) * 2); x1 = xe - dx; x2 = xe + dx; if (Math.Abs(x1) <= 1) { roots++; } if (Math.Abs(x2) <= 1) { roots++; } if (x1 < -1) { x1 = x2; } if (roots == 1) { if (h0 < 0) { rise = i + x1; } else { set = i + x1; } } else if (roots == 2) { rise = i + (ye < 0 ? x2 : x1); set = i + (ye < 0 ? x1 : x2); } if (rise > 0 && set > 0) { break ; } h0 = h2; } } risem = DateTime.MinValue; setm = DateTime.MinValue; if (rise > 0) { risem = HoursLater(t, rise); } if ( set > 0) { setm = HoursLater(t, set ); } alwaysUp = null ; //false;// alwaysDown = null ; //false;// if (rise < 0 && set < 0) { if (ye > 0) { alwaysUp = true ; alwaysDown = false ; risem = DateTime.MaxValue; setm = DateTime.MaxValue; } else { alwaysDown = true ; alwaysUp = false ; } } } #endregion /// <summary> /// 计算月亮升起和降落时间 /// </summary> /// <param name="date"></param> /// <param name="latitude">纬度</param> /// <param name="longitude">经度</param> /// <returns></returns> public static MoonTimeResult GetMoonTime(DateTime date, double latitude, double longitude) { double moonrise = 0; double moonset = 0; DateTime dt = new DateTime(date.Year, date.Month, date.Day, 0, 0, 0, DateTimeKind.Utc); bool ? up = null ; bool ? down = null ; DateTime rise; DateTime set ; MoonRiset(dt, latitude, longitude, out rise, out set , out up, out down); //, out up, out down DateTime moonriseTime = rise; // ToLocalTime(rise, moonrise);// DateTime moonsetTime = set ; //ToLocalTime(set, moonset); // return new MoonTimeResult(moonriseTime, moonsetTime); } /// <summary> /// 私有方法:将 UTC 时间转换为本地时间 /// </summary> /// <param name="time"></param> /// <param name="utTime"></param> /// <returns></returns> private static DateTime ToLocalTime(DateTime time, double utTime) { int hour = Convert.ToInt32(Math.Floor(utTime)); double temp = utTime - hour; hour += 8; // 转换为东8区北京时间 temp = temp * 60; int minute = Convert.ToInt32(Math.Floor(temp)); try { return new DateTime(time.Year, time.Month, time.Day, hour, minute, 0); } catch { return new DateTime(time.Year, time.Month, time.Day, 0, 0, 0); } } } /// <summary> /// 日出日落时间结果类 /// </summary> public class SunTimeResult { /// <summary> /// /// </summary> public DateTime SunriseTime { get ; set ; } /// <summary> /// /// </summary> public DateTime SunsetTime { get ; set ; } /// <summary> /// /// </summary> /// <param name="sunrise"></param> /// <param name="sunset"></param> public SunTimeResult(DateTime sunrise, DateTime sunset) { SunriseTime = sunrise; SunsetTime = sunset; } } /// <summary> /// 月亮升起和降落时间结果类 /// </summary> public class MoonTimeResult { /// <summary> /// /// </summary> public DateTime MoonriseTime { get ; set ; } /// <summary> /// /// </summary> public DateTime MoonsetTime { get ; set ; } /// <summary> /// /// </summary> /// <param name="moonrise"></param> /// <param name="moonset"></param> public MoonTimeResult(DateTime moonrise, DateTime moonset) { MoonriseTime = moonrise; MoonsetTime = moonset; } } } |
哲学管理(学)人生, 文学艺术生活, 自动(计算机学)物理(学)工作, 生物(学)化学逆境, 历史(学)测绘(学)时间, 经济(学)数学金钱(理财), 心理(学)医学情绪, 诗词美容情感, 美学建筑(学)家园, 解构建构(分析)整合学习, 智商情商(IQ、EQ)运筹(学)生存.---Geovin Du(涂聚文)
分类:
CSharp code
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 零经验选手,Compose 一天开发一款小游戏!
· 一起来玩mcp_server_sqlite,让AI帮你做增删改查!!
2016-05-13 csharp: Download SVN source