CSharp: SunTimeCalculator

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
 
namespace GeovinDu.Ticket.Common
{
    /// <summary>
    ///
    /// </summary>
    public static class DateTimeJavaScriptExt
    {
 
        /// <summary>
        /// Based on a JavaScript library SunCalc for calculating sun/moon position and light phases.
        ///https://github.com/mourner/suncalc
        /// </summary>
        /// <param name="dt"></param>
        /// <returns></returns>
        public static double ValueOf(this DateTime dt) // JavaScript Date.valueOf()
        {
            dt = dt.Kind == DateTimeKind.Local ? dt.ToUniversalTime() : dt;
            return (dt - new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds;
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="dt"></param>
        /// <param name="ms"></param>
        /// <returns></returns>
        public static DateTime FromJScriptValue(this DateTime dt, double ms)
        {
            return new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc).AddMilliseconds(ms);
        }
    }
    /// <summary>
    /// 计算日出日落时间,月升月落时间
    ///
    /// </summary>
    public class SunTimeCalculator
    {
 
 
        #region 辅助函数
        /// <summary>
        /// 历元2000.0,即以2000年第一天开端为计日起始(天文学以第一天为0日而非1日)。
        /// 它与UT(就是世界时,格林尼治平均太阳时)1999年末重合。
        /// </summary>
        /// <param name="y"></param>
        /// <param name="m"></param>
        /// <param name="d"></param>
        /// <returns></returns>
        private static long Days_since_2000_Jan_0(int y, int m, int d)
        {
            return (367L * (y) - ((7 * ((y) + (((m) + 9) / 12))) / 4) + ((275 * (m)) / 9) + (d) - 730530L);
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="x"></param>
        /// <returns></returns>
        private static double Revolution(double x)
        {
            return (x - 360.0 * Math.Floor(x * Inv360));
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="x"></param>
        /// <returns></returns>
        private static double Rev180(double x)
        {
            return (x - 360.0 * Math.Floor(x * Inv360 + 0.5));
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="d"></param>
        /// <returns></returns>
        private static double GMST0(double d)
        {
            double sidtim0;
            sidtim0 = Revolution((180.0 + 356.0470 + 282.9404) +
                (0.9856002585 + 4.70935E-5) * d);
            return sidtim0;
        }
 
        /// <summary>
        ///
        /// </summary>
        private static double Inv360 = 1.0 / 360.0;
        #endregion
 
        #region 度与弧度转换系数,为球面三角计算作准备
        /// <summary>
        ///
        /// </summary>
        /// <param name="x"></param>
        /// <returns></returns>
        private static double Sind(double x)
        {
            return Math.Sin(x * Degrad);
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="x"></param>
        /// <returns></returns>
        private static double Cosd(double x)
        {
            return Math.Cos(x * Degrad);
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="x"></param>
        /// <returns></returns>
        private static double Tand(double x)
        {
            return Math.Tan(x * Degrad);
 
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="x"></param>
        /// <returns></returns>
        private static double Atand(double x)
        {
            return Radge * Math.Atan(x);
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="x"></param>
        /// <returns></returns>
        private static double Asind(double x)
        {
            return Radge * Math.Asin(x);
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="x"></param>
        /// <returns></returns>
        private static double Acosd(double x)
        {
            return Radge * Math.Acos(x);
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="y"></param>
        /// <param name="x"></param>
        /// <returns></returns>
        private static double Atan2d(double y, double x)
        {
            return Radge * Math.Atan2(y, x);
 
        }
        /// <summary>
        ///
        /// </summary>
        private static double Radge = 180.0 / Math.PI;
        /// <summary>
        ///
        /// </summary>
        private static double Degrad = Math.PI / 180.0;
 
        #endregion
 
        #region 与日出日落时间相关计算
        /// <summary>
        ///
        /// </summary>
        /// <param name="year"></param>
        /// <param name="month"></param>
        /// <param name="day"></param>
        /// <param name="lon"></param>
        /// <param name="lat"></param>
        /// <param name="altit"></param>
        /// <param name="upper_limb"></param>
        /// <returns></returns>
        private static double DayLen(int year, int month, int day, double lon, double lat,
            double altit, int upper_limb)
        {
            double d,  /* Days since 2000 Jan 0.0 (negative before) */
                obl_ecl,    /* Obliquity (inclination) of Earth's axis */
                //黄赤交角,在2000.0历元下国际规定为23度26分21.448秒,但有很小的时间演化。
 
                sr,         /* Solar distance, astronomical units */
                slon,       /* True solar longitude */
                sin_sdecl,  /* Sine of Sun's declination */
                //太阳赤纬的正弦值。
                cos_sdecl,  /* Cosine of Sun's declination */
                sradius,    /* Sun's apparent radius */
                t;          /* Diurnal arc */
 
            /* Compute d of 12h local mean solar time */
            d = Days_since_2000_Jan_0(year, month, day) + 0.5 - lon / 360.0;
 
            /* Compute obliquity of ecliptic (inclination of Earth's axis) */
            obl_ecl = 23.4393 - 3.563E-7 * d;
            //这个黄赤交角时变公式来历复杂,很大程度是经验性的,不必追究。
 
            /* Compute Sun's position */
            slon = 0.0;
            sr = 0.0;
            Sunpos(d, ref slon, ref sr);
 
            /* Compute sine and cosine of Sun's declination */
            sin_sdecl = Sind(obl_ecl) * Sind(slon);
            cos_sdecl = Math.Sqrt(1.0 - sin_sdecl * sin_sdecl);
            //用球面三角学公式计算太阳赤纬。
 
            /* Compute the Sun's apparent radius, degrees */
            sradius = 0.2666 / sr;
            //视半径,同前。
 
            /* Do correction to upper limb, if necessary */
            if (upper_limb != 0)
                altit -= sradius;
 
            /* Compute the diurnal arc that the Sun traverses to reach */
            /* the specified altitide altit: */
            //根据设定的地平高度判据计算周日弧长。
            double cost;
            cost = (Sind(altit) - Sind(lat) * sin_sdecl) /
                (Cosd(lat) * cos_sdecl);
            if (cost >= 1.0)
                t = 0.0;                      /* Sun always below altit */
            //极夜。
            else if (cost <= -1.0)
                t = 24.0;                     /* Sun always above altit */
            //极昼。
            else t = (2.0 / 15.0) * Acosd(cost); /* The diurnal arc, hours */
            //周日弧换算成小时计。
            return t;
 
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="d"></param>
        /// <param name="lon"></param>
        /// <param name="r"></param>
        private static void Sunpos(double d, ref double lon, ref double r)
        {
            double M,//太阳的平均近点角,从太阳观察到的地球(=从地球看到太阳的)距近日点(近地点)的角度。
                w, //近日点的平均黄道经度。
                e, //地球椭圆公转轨道离心率。
                E, //太阳的偏近点角。计算公式见下面。
 
                x, y,
                v;  //真近点角,太阳在任意时刻的真实近点角。
 
 
            M = Revolution(356.0470 + 0.9856002585 * d);//自变量的组成:2000.0时刻太阳黄经为356.0470度,此后每天约推进一度(360度/365天
            w = 282.9404 + 4.70935E-5 * d;//近日点的平均黄经。
 
            e = 0.016709 - 1.151E-9 * d;//地球公转椭圆轨道离心率的时间演化。以上公式和黄赤交角公式一样,不必深究。
 
            E = M + e * Radge * Sind(M) * (1.0 + e * Cosd(M));
            x = Cosd(E) - e;
            y = Math.Sqrt(1.0 - e * e) * Sind(E);
            r = Math.Sqrt(x * x + y * y);
            v = Atan2d(y, x);
            lon = v + w;
            if (lon >= 360.0)
                lon -= 360.0;
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="d"></param>
        /// <param name="RA"></param>
        /// <param name="dec"></param>
        /// <param name="r"></param>
        private static void Sun_RA_dec(double d, ref double RA, ref double dec, ref double r)
        {
            double lon, obl_ecl, x, y, z;
            lon = 0.0;
 
            Sunpos(d, ref lon, ref r);
            //计算太阳的黄道坐标。
 
            x = r * Cosd(lon);
            y = r * Sind(lon);
            //计算太阳的直角坐标。
 
            obl_ecl = 23.4393 - 3.563E-7 * d;
            //黄赤交角,同前。
 
            z = y * Sind(obl_ecl);
            y = y * Cosd(obl_ecl);
            //把太阳的黄道坐标转换成赤道坐标(暂改用直角坐标)。
 
            RA = Atan2d(y, x);
            dec = Atan2d(z, Math.Sqrt(x * x + y * y));
            //最后转成赤道坐标。显然太阳的位置是由黄道坐标方便地直接确定的,但必须转换到赤
            //道坐标里才能结合地球的自转确定我们需要的白昼长度。
 
        }
        /// <summary>
        /// 日出没时刻计算
        /// </summary>
        /// <param name="year">年</param>
        /// <param name="month">月</param>
        /// <param name="day">日</param>
        /// <param name="lon">经度</param>
        /// <param name="lat">纬度</param>
        /// <param name="altit"></param>
        /// <param name="upper_limb"></param>
        /// <param name="trise">日出时刻</param>
        /// <param name="tset">日没时刻</param>
        /// <returns>太阳有出没现象,返回0 极昼,返回+1 极夜,返回-1</returns>
        private static int SunRiset(int year, int month, int day, double lon, double lat,
            double altit, int upper_limb, ref double trise, ref double tset)
        {
            double d,  /* Days since 2000 Jan 0.0 (negative before) */
                //以历元2000.0起算的日数。
 
                sr,         /* Solar distance, astronomical units */
                //太阳距离,以天文单位计算(约1.5亿公里)。     
 
                sRA,        /* Sun's Right Ascension */
                //同前,太阳赤经。
 
                sdec,       /* Sun's declination */
                //太阳赤纬。
 
                sradius,    /* Sun's apparent radius */
                //太阳视半径,约16分(受日地距离、大气折射等诸多影响)
 
                t,          /* Diurnal arc */
                //周日弧,太阳一天在天上走过的弧长。
 
                tsouth,     /* Time when Sun is at south */
                sidtime;    /* Local sidereal time */
            //当地恒星时,即地球的真实自转周期。比平均太阳日(日常时间)长3分56秒。     
 
            int rc = 0; /* Return cde from function - usually 0 */
 
            /* Compute d of 12h local mean solar time */
            d = Days_since_2000_Jan_0(year, month, day) + 0.5 - lon / 360.0;
            //计算观测地当日中午时刻对应2000.0起算的日数。
 
            /* Compute local sideral time of this moment */
            sidtime = Revolution(GMST0(d) + 180.0 + lon);
            //计算同时刻的当地恒星时(以角度为单位)。以格林尼治为基准,用经度差校正。
 
            /* Compute Sun's RA + Decl at this moment */
            sRA = 0.0;
            sdec = 0.0;
            sr = 0.0;
            Sun_RA_dec(d, ref sRA, ref sdec, ref sr);
            //计算同时刻太阳赤经赤纬。
 
            /* Compute time when Sun is at south - in hours UT */
            tsouth = 12.0 - Rev180(sidtime - sRA) / 15.0;
            //计算太阳日的正午时刻,以世界时(格林尼治平太阳时)的小时计。
 
            /* Compute the Sun's apparent radius, degrees */
            sradius = 0.2666 / sr;
            //太阳视半径。0.2666是一天文单位处的太阳视半径(角度)。
 
            /* Do correction to upper limb, if necessary */
            if (upper_limb != 0)
                altit -= sradius;
            //如果要用上边缘,就要扣除一个视半径。
 
            /* Compute the diurnal arc that the Sun traverses to reach */
            //计算周日弧。直接利用球面三角公式。如果碰到极昼极夜问题,同前处理。
            /* the specified altitide altit: */
 
            double cost;
            cost = (Sind(altit) - Sind(lat) * Sind(sdec)) /
                (Cosd(lat) * Cosd(sdec));
            if (cost >= 1.0)
            {
                rc = -1;
                t = 0.0;
            }
            else
            {
                if (cost <= -1.0)
                {
                    rc = +1;
                    t = 12.0;      /* Sun always above altit */
                }
                else
                    t = Acosd(cost) / 15.0;   /* The diurnal arc, hours */
            }
 
 
            /* Store rise and set times - in hours UT */
            trise = tsouth - t;
            tset = tsouth + t;
 
            return rc;
        }
        #endregion
 
        /// <summary>
        /// 计算日出日没时间
        /// </summary>
        /// <param name="date"></param>
        /// <param name="longitude">经度</param>
        /// <param name="latitude">纬度</param>
        /// <returns></returns>
        public static SunTimeResult GetSunTime(DateTime date, double longitude, double latitude)
        {
            double start = 0;
            double end = 0;
            SunRiset(date.Year, date.Month, date.Day, longitude, latitude, -35.0 / 60.0, 1, ref start, ref end);
            DateTime sunrise = ToLocalTime(date, start);
            DateTime sunset = ToLocalTime(date, end);
            return new SunTimeResult(sunrise, sunset);
        }
 
        #region moon 月亮计算
 
 
        private const double dayMs = 86400000;
        private const double J1970 = 2440588;
        private const double J2000 = 2451545;
        private const double PI = Math.PI;
        private const double rad = Math.PI / 180.0;
        private const double e = rad * 23.4397; // obliquity of the Earth
 
 
        /// <summary>
        ///
        /// </summary>
        public class SunTime
        {
            public double Angle { get; set; }
            public string MorningName { get; set; }
            public string EveningName { get; set; }
        }
        /// <summary>
        ///
        /// </summary>
        public class SunTimeRiseSet : SunTime
        {
            public DateTime RiseTime { get; set; }
            public DateTime SetTime { get; set; }
        }
 
        /// <summary>
        /// sun times configuration (angle, morning name, evening name)
        /// </summary>
 
        public static List<SunTime> SunTimes = new List<SunTime>(new SunTime[]
        {
            new SunTime { Angle = -0.833, MorningName = "sunrise", EveningName = "sunset" },
            new SunTime { Angle = -0.3, MorningName = "sunriseEnd", EveningName = "sunsetStart" },
            new SunTime { Angle = -6, MorningName = "dawn", EveningName = "dusk" },
            new SunTime { Angle = -12, MorningName = "nauticalDawn", EveningName = "nauticalDusk" },
            new SunTime { Angle = -18, MorningName = "nightEnd", EveningName = "night" },
            new SunTime { Angle = 6, MorningName = "goldenHourEnd", EveningName = "goldenHour" }
        });
 
        /// <summary>
        /// adds a custom time to the times config
        /// </summary>
        /// <param name="sunTime"></param>
 
        public static void AddTime(SunTime sunTime)
        {
            SunTimes.Add(sunTime);
        }
        /// <summary>
        ///
        /// </summary>
        public class RaDec
        {
            public double ra = 0;
            public double dec = 0;
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="dt"></param>
        /// <returns></returns>
        public static double ToJulianDate(DateTime dt)
        {
            dt = dt.Kind == DateTimeKind.Local ? dt.ToUniversalTime() : dt;
            return (dt - new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds / dayMs - 0.5 + J1970;
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="jd"></param>
        /// <returns></returns>
        public static DateTime FromJulianDate(double jd)
        {
            return double.IsNaN(jd)
                ? DateTime.MinValue
                : new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc).AddMilliseconds((jd + 0.5 - J1970) * dayMs);
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="dt"></param>
        /// <returns></returns>
        public static double JulianDays(DateTime dt)
        {
            dt = dt.Kind == DateTimeKind.Local ? dt.ToUniversalTime() : dt;
            return ToJulianDate(dt) - J2000;
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="l"></param>
        /// <param name="b"></param>
        /// <returns></returns>
        public static double RightAscension(double l, double b)
        {
            return Math.Atan2(Math.Sin(l) * Math.Cos(e) - Math.Tan(b) * Math.Sin(e), Math.Cos(l));
        }
 
        public static double Declination(double l, double b)
        {
            return Math.Asin(Math.Sin(b) * Math.Cos(e) + Math.Cos(b) * Math.Sin(e) * Math.Sin(l));
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="H"></param>
        /// <param name="phi"></param>
        /// <param name="dec"></param>
        /// <returns></returns>
        public static double Azimuth(double H, double phi, double dec)
        {
            return Math.Atan2(Math.Sin(H), Math.Cos(H) * Math.Sin(phi) - Math.Tan(dec) * Math.Cos(phi));
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="H"></param>
        /// <param name="phi"></param>
        /// <param name="dec"></param>
        /// <returns></returns>
        public static double Altitude(double H, double phi, double dec)
        {
            return Math.Asin(Math.Sin(phi) * Math.Sin(dec) + Math.Cos(phi) * Math.Cos(dec) * Math.Cos(H));
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="d"></param>
        /// <param name="lw"></param>
        /// <returns></returns>
        public static double SiderealTime(double d, double lw)
        {
            return rad * (280.16 + 360.9856235 * d) - lw;
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="h"></param>
        /// <returns></returns>
        public static double AstroRefraction(double h)
        {
            if (h < 0) // the following formula works for positive altitudes only.
            {
                h = 0; // if h = -0.08901179 a div/0 would occur.
            }
 
            // formula 16.4 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
            // 1.02 / tan(h + 10.26 / (h + 5.10)) h in degrees, result in arc minutes -> converted to rad:
            return 0.0002967 / Math.Tan(h + 0.00312536 / (h + 0.08901179));
        }
 
        /// <summary>
        /// general sun calculations
        /// </summary>
        /// <param name="d"></param>
        /// <returns></returns>
 
        public static double SolarMeanAnomaly(double d)
        {
            return rad * (357.5291 + 0.98560028 * d);
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="dt"></param>
        /// <param name="h"></param>
        /// <returns></returns>
        public static DateTime HoursLater(DateTime dt, double h)
        {
            return new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc).AddMilliseconds(dt.ValueOf() + h * dayMs / 24); //ValueOf
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="M"></param>
        /// <returns></returns>
        public static double EclipticLongitude(double M)
        {
            double C = rad * (1.9148 * Math.Sin(M) + 0.02 * Math.Sin(2 * M) +
                              0.0003 * Math.Sin(3 * M)); // equation of center
            double P = rad * 102.9372; // perihelion of the Earth
            return M + C + P + PI;
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="d"></param>
        /// <returns></returns>
        public static RaDec SunCoords(double d)
        {
            double M = SolarMeanAnomaly(d);
            double L = EclipticLongitude(M);
            return new RaDec { dec = Declination(L, 0), ra = RightAscension(L, 0) };
        }
        /// <summary>
        ///
        /// </summary>
        public class MoonRaDecDist
        {
            public double ra = 0;
            public double dec = 0;
            public double dist = 0;
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="d"></param>
        /// <returns></returns>
        public static MoonRaDecDist MoonCoords(double d) // geocentric ecliptic coordinates of the moon
        {
            double L = rad * (218.316 + 13.176396 * d); // ecliptic longitude
            double M = rad * (134.963 + 13.064993 * d); // mean anomaly
            double F = rad * (93.272 + 13.229350 * d); // mean distance
 
            double l = L + rad * 6.289 * Math.Sin(M); // longitude
            double b = rad * 5.128 * Math.Sin(F); // latitude
            double dt = 385001 - 20905 * Math.Cos(M); // distance to the moon in km
 
            return new MoonRaDecDist { ra = RightAscension(l, b), dec = Declination(l, b), dist = dt };
        }
        /// <summary>
        ///
        /// </summary>
        public class MoonAzAltDistPa
        {
            public double azimuth = 0;
            public double altitude = 0;
            public double distance = 0;
            public double parallacticAngle = 0;
        }
        /// <summary>
        ///
        /// </summary>
        public class MoonFracPhaseAngle
        {
            public double fraction = 0;
            public double phase = 0;
            public double angle = 0;
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="dt"></param>
        /// <param name="lat"></param>
        /// <param name="lng"></param>
        /// <returns></returns>
        public static MoonAzAltDistPa GetMoonPosition(DateTime dt, double lat, double lng)
        {
            double lw = rad * -lng;
            double phi = rad * lat;
            double d = JulianDays(dt);
 
            MoonRaDecDist c = MoonCoords(d);
            double H = SiderealTime(d, lw) - c.ra;
            double h = Altitude(H, phi, c.dec);
            // formula 14.1 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
            double pa = Math.Atan2(Math.Sin(H), Math.Tan(phi) * Math.Cos(c.dec) - Math.Sin(c.dec) * Math.Cos(H));
 
            h += AstroRefraction(h); // altitude correction for refraction
            return new MoonAzAltDistPa { azimuth = Azimuth(H, phi, c.dec), altitude = h, distance = c.dist, parallacticAngle = pa };
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="dt"></param>
        /// <returns></returns>
        public static MoonFracPhaseAngle GetMoonIllumination(DateTime dt)
        {
            double d = JulianDays(dt);
            RaDec s = SunCoords(d);
            MoonRaDecDist m = MoonCoords(d);
            double sdist = 149598000; // distance from Earth to Sun in km
            double phi = Math.Acos(Math.Sin(s.dec) * Math.Sin(m.dec) +
                                   Math.Cos(s.dec) * Math.Cos(m.dec) * Math.Cos(s.ra - m.ra));
            double inc = Math.Atan2(sdist * Math.Sin(phi), m.dist - sdist * Math.Cos(phi));
            double angle = Math.Atan2(Math.Cos(s.dec) * Math.Sin(s.ra - m.ra), Math.Sin(s.dec) * Math.Cos(m.dec) -
                Math.Cos(s.dec) * Math.Sin(m.dec) * Math.Cos(s.ra - m.ra));
            return new MoonFracPhaseAngle
            {
                fraction = (1 + Math.Cos(inc)) / 2,
                phase = 0.5 + 0.5 * inc * (angle < 0 ? -1 : 1) / PI,
                angle = angle
            };
        }
 
        /// <summary>
        /// DateTime.Max = always up, DateTime.Min = always down
        /// </summary>
        /// <param name="dt"></param>
        /// <param name="lat">纬度</param>
        /// <param name="lng">经度</param>
        /// <param name="risem"></param>
        /// <param name="setm"></param>
        /// <param name="alwaysUp"></param>
        /// <param name="alwaysDown"></param>
        public static void MoonRiset(DateTime dt, double lat, double lng, out DateTime risem, out DateTime setm,
            out bool? alwaysUp, out bool? alwaysDown)
        {
            dt = new DateTime(dt.Year, dt.Month, dt.Day, 0, 0, 0, DateTimeKind.Utc);
            DateTime t = dt;
 
            double hc = 0.133 * rad;
            double h0 = GetMoonPosition(t, lat, lng).altitude - hc;
            double h1, h2, rise = 0, set = 0, a, b, xe, ye = 0, d, x1, x2, dx;
            int roots;
 
            for (double i = 1.0; i <= 24.0; i += 2.0)
            {
                h1 = GetMoonPosition(HoursLater(t, i), lat, lng).altitude - hc;
                h2 = GetMoonPosition(HoursLater(t, i + 1), lat, lng).altitude - hc;
 
                a = (h0 + h2) / 2 - h1;
                b = (h2 - h0) / 2;
                xe = -b / (2 * a);
                ye = (a * xe + b) * xe + h1;
                d = b * b - 4 * a * h1;
                roots = 0;
 
                if (d >= 0)
                {
                    dx = Math.Sqrt(d) / (Math.Abs(a) * 2);
                    x1 = xe - dx;
                    x2 = xe + dx;
                    if (Math.Abs(x1) <= 1)
                    {
                        roots++;
                    }
 
                    if (Math.Abs(x2) <= 1)
                    {
                        roots++;
                    }
 
                    if (x1 < -1)
                    {
                        x1 = x2;
                    }
 
                    if (roots == 1)
                    {
                        if (h0 < 0)
                        {
                            rise = i + x1;
                        }
                        else
                        {
                            set = i + x1;
                        }
                    }
                    else if (roots == 2)
                    {
                        rise = i + (ye < 0 ? x2 : x1);
                        set = i + (ye < 0 ? x1 : x2);
                    }
 
                    if (rise > 0 && set > 0)
                    {
                        break;
                    }
 
                    h0 = h2;
                }
            }
 
            risem = DateTime.MinValue;
            setm = DateTime.MinValue;
 
            if (rise > 0)
            {
                risem = HoursLater(t, rise);
            }
 
            if (set > 0)
            {
                setm = HoursLater(t, set);
            }
 
            alwaysUp = null;
            alwaysDown = null;
 
            if (rise < 0 && set < 0)
            {
                if (ye > 0)
                {
                    alwaysUp = true;
                    alwaysDown = false;
                    risem = DateTime.MaxValue;
                    setm = DateTime.MaxValue;
                }
                else
                {
                    alwaysDown = true;
                    alwaysUp = false;
                }
            }
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="year"></param>
        /// <param name="month"></param>
        /// <param name="day"></param>
        /// <param name="lat">纬度</param>
        /// <param name="lng">经度</param>
        /// <param name="risem"></param>
        /// <param name="setm"></param>
        /// <param name="alwaysUp"></param>
        /// <param name="alwaysDown"></param>
        public static void MoonRisetInt(int year, int month, int day, double lat, double lng, out DateTime risem, out DateTime setm,
                out bool? alwaysUp, out bool? alwaysDown)
        {
            DateTime dt = new DateTime(year, month, day, 0, 0, 0, DateTimeKind.Utc);
 
            DateTime t = dt;
 
            double hc = 0.133 * rad;
            double h0 = GetMoonPosition(t, lat, lng).altitude - hc;
            double h1, h2, rise = 0, set = 0, a, b, xe, ye = 0, d, x1, x2, dx;
            int roots;
 
            for (double i = 1.0; i <= 24.0; i += 2.0)
            {
                h1 = GetMoonPosition(HoursLater(t, i), lat, lng).altitude - hc;
                h2 = GetMoonPosition(HoursLater(t, i + 1), lat, lng).altitude - hc;
 
                a = (h0 + h2) / 2 - h1;
                b = (h2 - h0) / 2;
                xe = -b / (2 * a);
                ye = (a * xe + b) * xe + h1;
                d = b * b - 4 * a * h1;
                roots = 0;
 
                if (d >= 0)
                {
                    dx = Math.Sqrt(d) / (Math.Abs(a) * 2);
                    x1 = xe - dx;
                    x2 = xe + dx;
                    if (Math.Abs(x1) <= 1)
                    {
                        roots++;
                    }
 
                    if (Math.Abs(x2) <= 1)
                    {
                        roots++;
                    }
 
                    if (x1 < -1)
                    {
                        x1 = x2;
                    }
 
                    if (roots == 1)
                    {
                        if (h0 < 0)
                        {
                            rise = i + x1;
                        }
                        else
                        {
                            set = i + x1;
                        }
                    }
                    else if (roots == 2)
                    {
                        rise = i + (ye < 0 ? x2 : x1);
                        set = i + (ye < 0 ? x1 : x2);
                    }
 
                    if (rise > 0 && set > 0)
                    {
                        break;
                    }
 
                    h0 = h2;
                }
            }
 
            risem = DateTime.MinValue;
            setm = DateTime.MinValue;
 
            if (rise > 0)
            {
                risem = HoursLater(t, rise);
            }
 
            if (set > 0)
            {
                setm = HoursLater(t, set);
            }
 
            alwaysUp = null; //false;//
            alwaysDown = null; //false;//
 
            if (rise < 0 && set < 0)
            {
                if (ye > 0)
                {
                    alwaysUp = true;
                    alwaysDown = false;
                    risem = DateTime.MaxValue;
                    setm = DateTime.MaxValue;
                }
                else
                {
                    alwaysDown = true;
                    alwaysUp = false;
                }
            }
        }
        #endregion
 
        /// <summary>
        /// 计算月亮升起和降落时间
        /// </summary>
        /// <param name="date"></param>
        /// <param name="latitude">纬度</param>
        /// <param name="longitude">经度</param>
        /// <returns></returns>
        public static MoonTimeResult GetMoonTime(DateTime date, double latitude, double longitude)
        {
            double moonrise = 0;
            double moonset = 0;
            DateTime dt = new DateTime(date.Year, date.Month, date.Day, 0, 0, 0, DateTimeKind.Utc);
            bool? up = null;
            bool? down = null;
            DateTime rise;
            DateTime set;
            MoonRiset(dt, latitude, longitude, out rise, out set, out up, out down); //, out up, out down
            DateTime moonriseTime = rise;// ToLocalTime(rise, moonrise);//
            DateTime moonsetTime = set;//ToLocalTime(set, moonset); //
            return new MoonTimeResult(moonriseTime, moonsetTime);
        }
 
        /// <summary>
        /// 私有方法:将 UTC 时间转换为本地时间
        /// </summary>
        /// <param name="time"></param>
        /// <param name="utTime"></param>
        /// <returns></returns>
 
        private static DateTime ToLocalTime(DateTime time, double utTime)
        {
            int hour = Convert.ToInt32(Math.Floor(utTime));
            double temp = utTime - hour;
            hour += 8; // 转换为东8区北京时间
            temp = temp * 60;
            int minute = Convert.ToInt32(Math.Floor(temp));
            try
            {
                return new DateTime(time.Year, time.Month, time.Day, hour, minute, 0);
            }
            catch
            {
                return new DateTime(time.Year, time.Month, time.Day, 0, 0, 0);
            }
        }
 
 
 
 
    }
 
 
    /// <summary>
    /// 日出日落时间结果类
    /// </summary>
    public class SunTimeResult
    {
        /// <summary>
        ///
        /// </summary>
        public DateTime SunriseTime { get; set; }
        /// <summary>
        ///
        /// </summary>
        public DateTime SunsetTime { get; set; }
 
        /// <summary>
        ///
        /// </summary>
        /// <param name="sunrise"></param>
        /// <param name="sunset"></param>
        public SunTimeResult(DateTime sunrise, DateTime sunset)
        {
            SunriseTime = sunrise;
            SunsetTime = sunset;
        }
    }
 
    /// <summary>
    /// 月亮升起和降落时间结果类
    /// </summary>
    public class MoonTimeResult
    {
 
        /// <summary>
        ///
        /// </summary>
        public DateTime MoonriseTime { get; set; }
        /// <summary>
        ///
        /// </summary>
        public DateTime MoonsetTime { get; set; }
        /// <summary>
        ///
        /// </summary>
        /// <param name="moonrise"></param>
        /// <param name="moonset"></param>
        public MoonTimeResult(DateTime moonrise, DateTime moonset)
        {
            MoonriseTime = moonrise;
            MoonsetTime = moonset;
        }
    }
 
}

  

posted @   ®Geovin Du Dream Park™  阅读(126)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 零经验选手,Compose 一天开发一款小游戏!
· 一起来玩mcp_server_sqlite,让AI帮你做增删改查!!
历史上的今天:
2016-05-13 csharp: Download SVN source
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
点击右上角即可分享
微信分享提示