python: Ten Sort Algotrthms
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 | # encoding: utf-8 # Author : geovindu,Geovin Du 涂聚文. # IDE : PyCharm 2023.1 python 11 # Datetime : 2023/7/2 20:25 # User : geovindu # Product : PyCharm # Project : pythonStudyDemo # File : TenSortAlgotrthms.py # explain : 学习 十种排序 https://www.sitepoint.com/best-sorting-algorithms/ python javascript from enum import Enum import sortingalgorithms.CheckSort import sortingalgorithms.duplicateChecking from heapq import heappop, heappush class TenSortAlgotrthms( object ): """ """ def bubbleSort( self ,arr): """ 1。冒泡排序方法bubble Sort 从小至大 升序 :param arr 整数数组 如 arr = [64, 34, 25, 12, 22, 11, 90] :return: """ n = len (arr) swapped = False for i in range (n - 1 ): for j in range ( 0 , n - i - 1 ): if arr[j] > arr[j + 1 ]: swapped = True arr[j], arr[j + 1 ] = arr[j + 1 ], arr[j] if not swapped: return def bubbleSort( self ,arr,checkSort = None ): """ 1。冒泡排序方法 从小至大 升序 :param arr 整数数组 如 arr = [64, 34, 25, 12, 22, 11, 90] :param checkSort选择排序方式 Desc 降序 Asc 升序 :return: """ n = len (arr) swapped = False if (checkSort! = None ): if (checkSort.Asc = = sortingalgorithms.CheckSort.CheckSort.Desc): for i in range (n - 1 ): for j in range ( 0 , n - i - 1 ): if arr[j] > arr[j + 1 ]: swapped = True arr[j], arr[j + 1 ] = arr[j + 1 ], arr[j] if not swapped: return else : for i in range (n - 1 ): for j in range ( 0 , n - i - 1 ): if arr[j] < arr[j + 1 ]: swapped = True arr[j], arr[j + 1 ] = arr[j + 1 ], arr[j] if not swapped: return else : for i in range (n - 1 ): for j in range ( 0 , n - i - 1 ): if arr[j] > arr[j + 1 ]: swapped = True arr[j], arr[j + 1 ] = arr[j + 1 ], arr[j] if not swapped: return def bubbleSortIndex( self , arr, checkSort, eqLeter : int ): """ 1。冒泡排序方法 bubble Sort 从小至大 升序 :param arr 整数数组 如 arr = [64, 34, 25, 12, 22, 11, 90] :param checkSort选择排序方式 Desc 降序 Asc 升序 :param eqLeter 找查指定的数字的下标 :return:返回下标 元组 """ n = len (arr) fin = sortingalgorithms.duplicateChecking.DuplicateChecking() index = fin.findindex(arr, eqLeter) # print("index" ,index ,eqLeter) swapped = False if (checkSort.Asc = = sortingalgorithms.CheckSort.CheckSort.Desc): for i in range (n - 1 ): for j in range ( 0 , n - i - 1 ): if arr[j] > arr[j + 1 ]: swapped = True arr[j], arr[j + 1 ] = arr[j + 1 ], arr[j] if not swapped: return index else : for i in range (n - 1 ): for j in range ( 0 , n - i - 1 ): if arr[j] < arr[j + 1 ]: swapped = True arr[j], arr[j + 1 ] = arr[j + 1 ], arr[j] if not swapped: return index def insertionSort( self ,items: list ): """ 2 插入排序(Insertion Sort) items = [6,20,8,19,56,23,87,41,49,53] print(insertionSort(items)) :param items :return: """ for i in range ( 1 , len (items)): j = i while j > 0 and items[j - 1 ] > items[j]: items[j - 1 ], items[j] = items[j], items[j - 1 ] j - = 1 return items def quickSort( self ,items: list ): """ 3 快速排序(Quick Sort) quick Sort items = [6,20,8,19,56,23,87,41,49,53] print(quickSort(items)) :param items :return: """ if len (items) > 1 : pivot = items[ 0 ] left = [i for i in items[ 1 :] if i < pivot] right = [i for i in items[ 1 :] if i > = pivot] return self .quickSort(left) + [pivot] + self .quickSort(right) else : return items def bucketSort( self ,items: list ): """ 4 桶排序(Bucket Sort) Bucket sort items = [6,20,8,19,56,23,87,41,49,53] print(bucketSort(items)) :param items: :return: """ buckets = [[] for _ in range ( len (items))] for item in items: bucket = int (item / len (items)) buckets[bucket].append(item) for bucket in buckets: bucket.sort() return [item for bucket in buckets for item in bucket] def shellSort( self ,items: list ): """ 5 希尔排序(Shell Sort)items = [6,20,8,19,56,23,87,41,49,53] print(shellSort(items)) :param items: :return: """ sublistcount = len (items) / / 2 while sublistcount > 0 : for start in range (sublistcount): self .gap_insertion_sort(items, start, sublistcount) sublistcount = sublistcount / / 2 return items def gap_insertion_sort( self ,items: list , start, gap): """ :param items: :param start: :param gap: :return: """ for i in range (start + gap, len (items), gap): currentvalue = items[i] position = i while position > = gap and items[position - gap] > currentvalue: items[position] = items[position - gap] position = position - gap items[position] = currentvalue def mergeSort( self ,items: list ): """ 6.归并排序(Merge Sort)items = [6,20,8,19,56,23,87,41,49,53] print(mergeSort(items)) :param items: :return: """ if len (items) < = 1 : return items mid = len (items) / / 2 left = items[:mid] right = items[mid:] left = self .mergeSort(left) right = self .mergeSort(right) return self .merge(left, right) def merge( self ,left, right): """ :param left: :param right: :return: """ merged = [] left_index = 0 right_index = 0 while left_index < len (left) and right_index < len (right): if left[left_index] > right[right_index]: merged.append(right[right_index]) right_index + = 1 else : merged.append(left[left_index]) left_index + = 1 merged + = left[left_index:] merged + = right[right_index:] return merged def selectionSort( self ,items: list ): """ 7 选择排序(Selection Sort)items = [6,20,8,19,56,23,87,41,49,53] print(selectionSort(items)) :param items: :return: """ for i in range ( len (items)): min_idx = i for j in range (i + 1 , len (items)): if items[min_idx] > items[j]: min_idx = j items[i], items[min_idx] = items[min_idx], items[i] return items def radixSort( self ,items: list ): """ 8 基数排序(Radix Sort)items = [6,20,8,19,56,23,87,41,49,53] print(radixSort(items)) :param items: :return: """ max_length = False tmp, placement = - 1 , 1 while not max_length: max_length = True buckets = [ list () for _ in range ( 10 )] for i in items: tmp = i / / placement buckets[tmp % 10 ].append(i) if max_length and tmp > 0 : max_length = False a = 0 for b in range ( 10 ): buck = buckets[b] for i in buck: items[a] = i a + = 1 placement * = 10 return items def combSort( self ,items: list ): """ 9 梳排序(Comb sort)(梳排序是一种不稳定排序算法,改良自泡沫排序和快速排序。其目的是消除阵列尾部的小数值,提高排序效率) :param items: :return: """ gap = len (items) shrink = 1.3 sorted = False while not sorted : gap / / = shrink if gap < = 1 : sorted = True else : for i in range ( len (items) - gap): if items[i] > items[i + gap]: items[i], items[i + gap] = items[i + gap], items[i] return self .bubble_sort(items) def bubble_sort( self ,items: list ): """ :param items: :return: """ for i in range ( len (items)): for j in range ( len (items) - 1 - i): if items[j] > items[j + 1 ]: items[j], items[j + 1 ] = items[j + 1 ], items[j] return items def insertionSort( self ,arr, left = 0 , right = None ): """ :param arr: :param left: :param right: :return: """ if right is None : right = len (arr) - 1 for i in range (left + 1 , right + 1 ): key_item = arr[i] j = i - 1 while j > = left and arr[j] > key_item: arr[j + 1 ] = arr[j] j - = 1 arr[j + 1 ] = key_item return arr def merge( self ,left, right): """ :param left: :param right: :return: """ if not left: return right if not right: return left if left[ 0 ] < right[ 0 ]: return [left[ 0 ]] + self .imerge(left[ 1 :], right) return [right[ 0 ]] + self .imerge(left, right[ 1 :]) def timSort( self ,arr): """ 10 TimSort是结合了合并排序(合并排序)和插入排序(插入排序)而得出的排序算法,它在现实中有很好的效率.Tim Peters在2002年设计了该算法并在Python中使用是Python中list.sort的默认实现)。 items = [6,20,8,19,56,23,87,41,49,53] print(timsort(items)) :param arr: :return: """ min_run = 32 n = len (arr) for i in range ( 0 , n, min_run): self .insertionSort(arr, i, min ((i + min_run - 1 ), n - 1 )) size = min_run while size < n: for start in range ( 0 , n, size * 2 ): midpoint = start + size - 1 end = min ((start + size * 2 - 1 ), (n - 1 )) merged_array = self .imerge( left = arr[start:midpoint + 1 ], right = arr[midpoint + 1 :end + 1 ] ) arr[start:start + len (merged_array)] = merged_array size * = 2 return arr def countingSort( self ,inputArray): """ 11 计数排序(Counting sort)inputArray = [2,2,0,6,1,9,9,7] print("Input array = ", inputArray) sortedArray = countingSort(inputArray) print("Counting sort result = ", sortedArray) :return: """ # Find the maximum element in the inputArray maxElement = max (inputArray) countArrayLength = maxElement + 1 # Initialize the countArray with (max+1) zeros countArray = [ 0 ] * countArrayLength # Step 1 -> Traverse the inputArray and increase # the corresponding count for every element by 1 for el in inputArray: countArray[el] + = 1 # Step 2 -> For each element in the countArray, # sum up its value with the value of the previous # element, and then store that value # as the value of the current element for i in range ( 1 , countArrayLength): countArray[i] + = countArray[i - 1 ] # Step 3 -> Calculate element position # based on the countArray values outputArray = [ 0 ] * len (inputArray) i = len (inputArray) - 1 while i > = 0 : currentEl = inputArray[i] countArray[currentEl] - = 1 newPosition = countArray[currentEl] outputArray[newPosition] = currentEl i - = 1 return outputArray def heapSort( self ,array: list ): """ 12 堆排序(Heap Sort)array = [13, 21, 15, 5, 26, 4, 17, 18, 24, 2] print(heap_sort(array)) :param array: :return: """ heap = [] for element in array: heappush(heap, element) ordered = [] # While we have elements left in the heap while heap: ordered.append(heappop(heap)) return ordered |
哲学管理(学)人生, 文学艺术生活, 自动(计算机学)物理(学)工作, 生物(学)化学逆境, 历史(学)测绘(学)时间, 经济(学)数学金钱(理财), 心理(学)医学情绪, 诗词美容情感, 美学建筑(学)家园, 解构建构(分析)整合学习, 智商情商(IQ、EQ)运筹(学)生存.---Geovin Du(涂聚文)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 零经验选手,Compose 一天开发一款小游戏!
· 一起来玩mcp_server_sqlite,让AI帮你做增删改查!!
2019-07-05 Csharp: TreeList Drag and Drop
2017-07-05 MySQL and Sql Server:Getting metadata using sql script (SQL-92 standard)
2013-07-05 Javascript: hash tables in javascript
2013-07-05 Csharp:asp.net CheckBoxList databind