Loading

Latex常用内容

\[X=\left| \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d}\\ x_{21} & x_{22} & \cdots & x_{2d}\\ \vdots & \vdots & \ddots & \vdots \\ x_{11} & x_{12} & \cdots & x_{1d}\\ \end{matrix} \right| \]

\[\begin{matrix} 1 & x & x^2\\ 1 & y & y^2\\ 1 & z & z^2\\ \end{matrix} \]

\[\left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{array} \right\} \]

\[X=\begin{pmatrix} 0&1&1\\ 1&1&0\\ 1&0&1\\ \end{pmatrix} \]

1. 希腊字母表

\Sigma: \(\Sigma\)

\[\begin{align*} RQSZ \\ \mathcal{RQSZ} \\ \mathfrak{RQSZ} \\ \mathbb{RQSZ} \end{align*} \]

\[\begin{align*} 3x^2 \in R \subset Q \\ \mathnormal{3x^2 \in R \subset Q} \\ \mathrm{3x^2 \in R \subset Q} \\ \mathit{3x^2 \in R \subset Q} \\ \mathbf{3x^2 \in R \subset Q} \\ \mathsf{3x^2 \in R \subset Q} \\ \mathtt{3x^2 \in R \subset Q} \end{align*} \]

2. 上下标、根号、省略号、空格

  • 下标:_ x^2 \(\Longrightarrow\) $ x^2$

  • 上标:^ x_i\(\Longrightarrow\) \(x_i\)

  • 根号:\sqrt | y\sqrt{x}\(\Longrightarrow\) \(y\sqrt{x}\)

  • 省略号:

    \dots \(\Longrightarrow\dots\)

    \cdots \(\Longrightarrow\cdots\)

    \ddots \(\Longrightarrow\ddots\)

  • 括号

两个quad空格 a \qquad b \(a \qquad b\) 两个m的宽度
quad空格 a \quad b \(a \quad b\) 一个m的宽度
大空格 a\ b \(a\ b\) 1/3m宽度
中等空格 a;b \(a\;b\) 2/7m宽度
小空格 a,b \(a\,b\) 1/6m宽度
没有空格 ab \(ab\)
紧贴 a!b \(a\!b\) 缩进1/6m宽度

3. 运算符

  • 求和: \sum_1^n\(\Longrightarrow\) \(\sum_1^n\)
  • 积分:\int_1^n \(\Longrightarrow\) \(\int_1^n\)
  • 极限:lim_{x \to \infty}\(\Longrightarrow\) \(lim_{x \to \infty}\)
  • 分数:\frac{2}{3} \(\Longrightarrow\) $\frac{2}{3} $
  • 开方:\sqrt[2]{x} \(\Longrightarrow\) \(\sqrt[2]{x}\)
  • 积 :\prod_{i=0}^n \(\Longrightarrow\) \(\prod_{i=0}^n\)














f4. 箭头

字符 含义
\uparrow
\downarrow
\Uparrow
\Downarrow
\updownarrow
\Updownarrow
\rightarrow
\leftarrow
\Rightarrow
\Leftarrow
\leftrightarrow
\Leftrightarrow
\longrightarrow
\longleftarrow
\Longrightarrow
\Longleftarrow
\mapsto
\longmapsto
\hookleftarrow
\hookrightarrow
\leftharpoonup
\rightharpoonup
\leftharpoondown
\rightharpoondown
\rightleftharpoons
\leadsto
\nearrow
\searrow
\swarrow
\nwarrow
\nleftarrow
\nrightarrow
\nLeftarrow
\nRightarrow
\nleftrightarrow
\nLeftrightarrow
\dashrightarrow
\dashleftarrow
\leftleftarrows
\leftrightarrows
\Lleftarrow
\twoheadleftarrow
\leftarrowtail
\looparrowleft
\leftrightharpoons
\curvearrowleft
\circlearrowleft
\Lsh
\upharpoonleft
\downharpoonleft
\upuparrows
\multimap
\leftrightsquigarrow
\rightrightarrows
\rightleftarrows
\twoheadrightarrow
\rightarrowtail
\looparrowright
\rightleftharpoons
\curvearrowright
\circlearrowright
\Rsh
\downdownarrows
\upharpoonright
\downharpoonright
\rightsquigarrow

5. 分段函数

f(n)=
	\begin{cases}
		n/2, & \text{if $n$ is even}\\
		3n+1,& \text{if $n$ is odd}
	\end{cases}

\[f(n)= \begin{cases} n/2, & \text{if $n$ is even}\\ 3n+1,& \text{if $n$ is odd} \end{cases} \]

6. 方程组

\left.
  \left\{
    \begin{array}{c}
      a_1x+b_1y+c_1z=d_1\\
      a_2x+b_2y+c_2z=d_2\\
      a_3x+b_3y+c_3z=d_3
    \end{array}
  \right.
  \right>

\[ \left. \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{array} \right. \right> \]

7.矩阵

7.1 基本语法

  • 起始标记 \begin{matrix},结束标记 \end{matrix}
  • 每一行末尾标记 \\
  • 行间元素之间用 & 分隔。
\begin{matrix}
0&1&1\\
1&1&0\\
1&0&1\\
\end{matrix}

\[ \begin{matrix} 0&1&1\\ 1&1&0\\ 1&0&1\\ \end{matrix} \]

7.2 矩阵边框

  • 在起始、结束标记用下列词替换 matrix
  • pmatrix:小括号边框
  • bmatrix:中括号边框
  • Bmatrix:大括号边框
  • vmatrix:单竖线边框
  • Vmatrix:双竖线边框
\begin{vmatrix}
0&1&1\\
1&1&0\\
1&0&1\\
\end{vmatrix}

\[\begin{vmatrix} 0&1&1\\ 1&1&0\\ 1&0&1\\ \end{vmatrix} \]

7.3 省略元素

  • 横省略号:\cdots
  • 竖省略号:\vdots
  • 斜省略号:\ddots
\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\
{\vdots}&{\vdots}&{\ddots}&{\vdots}\\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\
\end{bmatrix}

\[\begin{bmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\ \end{bmatrix} \]

7.4 阵列

  • 需要array环境:起始、结束处以{array}声明
  • 对齐方式:在{array}后以{}逐行统一声明
  • 左对齐:l 居中:c 右对齐:r
  • 竖直线:在声明对齐方式时,插入 | 建立竖直线
  • 插入水平线:\hline
\begin{array}{c|lll}
{↓}&{a}&{b}&{c}\\
\hline
{R_1}&{c}&{b}&{a}\\
{R_2}&{b}&{c}&{c}\\
\end{array}

\[\begin{array}{c|lll} {↓}&{a}&{b}&{c}\\ \hline {R_1}&{c}&{b}&{a}\\ {R_2}&{b}&{c}&{c}\\ \end{array} \]

8.常用公式

8.1 线性模型

h(\theta) = \sum_{j=0} ^n \theta_j x_j

\[h(\theta) = \sum_{j=0} ^n \theta_j x_j \]

8.2 均方误差

J(\theta) = \frac{1}{2m}\sum_{i=0}^m(y^i - h_\theta(x^i))^2

\[J(\theta) = \frac{1}{2m}\sum_{i=0}^m(y^i - h_\theta(x^i))^2 \]

8.3 求积

H_c=\sum_{l_1+\dots +l_p}\prod^p_{i=1} \binom{n_i}{l_i}

\[H_c=\sum_{l_1+\dots +l_p}\prod^p_{i=1} \binom{n_i}{l_i} \]

8.4 批梯度下降

\[\frac{\partial J(\theta)}{\partial\theta_j} = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i))x^i_j \]

\[\begin{align} \frac{\partial J(\theta)}{\partial\theta_j} & = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))\\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_j x^i_j-y^i)\\ &=-\frac1m\sum_{i=0}^m(y^i -h_\theta(x^i)) x^i_j \end{align} \]


8.5 贝叶斯、先验、后验估计、似然估计

\[\begin{align} \overbrace{P(x,y|z,u)}^{后验概率} &= \frac{P(z,u|x,y)P(x,y)}{P(z,u)}\\ &\approx \underbrace{P(z,u|x,y)}_{似然} \ \underbrace{P(x,y)}_{先验概率} \end{align} \]

\[\begin{align} (x,y)^*_{MAP} &=argmax{P(x,y∣z,u)} \\ &=argmax{\frac{P(z,u|x,y)P(x,y)}{\underbrace{P(z,u)}_{此项与x,y无关,可以去掉}}} \\ &=argmax{{P(z,u|x,y)P(x,y)}} \end{align} \]

8.6 任意维高斯分布

\[P(x)=\frac{1}{\sqrt{(2\pi)^Ndet(\Sigma)}}exp(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)) \\ \Downarrow\Downarrow\Downarrow 负对数\\ -ln(P(x)) = \frac{1}{2}ln((2\pi)^Ndet(\Sigma))+\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu) \\ \Downarrow\Downarrow\Downarrow 负对数\\ (x)^*_{MLE}=argmax(P(x))=argmin((x-\mu)^T\Sigma^{-1}(x-\mu)) \]

8.7 高斯牛顿法求导

\[\begin{align} \triangle x^* &= \underset{\triangle x}{argmin} \frac{1}{2}||f(x+\triangle x)||^2 \\ &\approx ||f(x) + J(x)^T \triangle x ||^2 \\ &=\frac{1}{2}({||f(x)||^2+2f(x)J(x)^T\triangle x + \triangle x^TJ(x)J(x)^T\triangle x}) \\ \\ &\downdownarrows{令其求导等于0} \\ \\ &\underbrace{J(x)J(x)^T}_{H(x)}\triangle x = \underbrace{-J(x)f(x) }_{g(x)} \end{align} \\ \]

引用:

posted @ 2022-02-22 15:08  Geoffrey_one  阅读(298)  评论(0编辑  收藏  举报
/*
*/