Latex学习
\[X=\left|
\begin{matrix}
x_{11} & x_{12} & \cdots & x_{1d}\\
x_{21} & x_{22} & \cdots & x_{2d}\\
\vdots & \vdots & \ddots & \vdots \\
x_{11} & x_{12} & \cdots & x_{1d}\\
\end{matrix}
\right|
\]
\[\begin{matrix}
1 & x & x^2\\
1 & y & y^2\\
1 & z & z^2\\
\end{matrix}
\]
\[\left\{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1\\
a_2x+b_2y+c_2z=d_2\\
a_3x+b_3y+c_3z=d_3
\end{array}
\right\}
\]
\[X=\begin{pmatrix}
0&1&1\\
1&1&0\\
1&0&1\\
\end{pmatrix}
\]
1. 希腊字母表
\Sigma:
\(\Sigma\)
2. 上下标、根号、省略号
下标:_
x^2
\(\Longrightarrow\) $ x^2$上标:^
x_i
\(\Longrightarrow\) \(x_i\)根号:\sqrt |
y\sqrt{x}
\(\Longrightarrow\) \(y\sqrt{x}\)省略号:
\dots
\(\Longrightarrow\dots\)
\cdots
\(\Longrightarrow\cdots\)
\ddots
\(\Longrightarrow\ddots\)括号
3. 运算符
- 求和:
\sum_1^n
\(\Longrightarrow\) \(\sum_1^n\)- 积分:
\int_1^n
\(\Longrightarrow\) \(\int_1^n\)- 极限:
lim_{x \to \infty}
\(\Longrightarrow\) \(lim_{x \to \infty}\)- 分数:
\frac{2}{3}
\(\Longrightarrow\) $\frac{2}{3} $
4. 箭头
\leftarrow
对应 \(\leftarrow\)
5. 分段函数
f(n)=
\begin{cases}
n/2, & \text{if $n$ is even}\\
3n+1,& \text{if $n$ is odd}
\end{cases}
\[f(n)=
\begin{cases}
n/2, & \text{if $n$ is even}\\
3n+1,& \text{if $n$ is odd}
\end{cases}
\]
6. 方程组
\left.
\left\{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1\\
a_2x+b_2y+c_2z=d_2\\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
\right>
\[\left.
\left\{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1\\
a_2x+b_2y+c_2z=d_2\\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
\right>
\]
7.矩阵
7.1 基本语法
- 起始标记
\begin{matrix}
,结束标记\end{matrix}
- 每一行末尾标记
\\
- 行间元素之间用
&
分隔。
\begin{matrix}
0&1&1\\
1&1&0\\
1&0&1\\
\end{matrix}
\[\begin{matrix}
0&1&1\\
1&1&0\\
1&0&1\\
\end{matrix}
\]
7.2 矩阵边框
- 在起始、结束标记用下列词替换
matrix
pmatrix
:小括号边框bmatrix
:中括号边框Bmatrix
:大括号边框vmatrix
:单竖线边框Vmatrix
:双竖线边框
\begin{vmatrix}
0&1&1\\
1&1&0\\
1&0&1\\
\end{vmatrix}
\[\begin{vmatrix}
0&1&1\\
1&1&0\\
1&0&1\\
\end{vmatrix}
\]
7.3 省略元素
- 横省略号:
\cdots
- 竖省略号:
\vdots
- 斜省略号:
\ddots
\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\
{\vdots}&{\vdots}&{\ddots}&{\vdots}\\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\
\end{bmatrix}
\[\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\
{\vdots}&{\vdots}&{\ddots}&{\vdots}\\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\
\end{bmatrix}
\]
7.4 阵列
- 需要array环境:起始、结束处以{array}声明
- 对齐方式:在{array}后以{}逐行统一声明
- 左对齐:
l
居中:c
右对齐:r
- 竖直线:在声明对齐方式时,插入
|
建立竖直线- 插入水平线:
\hline
\begin{array}{c|lll}
{↓}&{a}&{b}&{c}\\
\hline
{R_1}&{c}&{b}&{a}\\
{R_2}&{b}&{c}&{c}\\
\end{array}
\[\begin{array}{c|lll}
{↓}&{a}&{b}&{c}\\
\hline
{R_1}&{c}&{b}&{a}\\
{R_2}&{b}&{c}&{c}\\
\end{array}
\]
- 需要array环境:起始、结束处以{array}声明
7.5 等号上下文字
\arrowname[sub-script]{super-script}
- arrowname具体见下面,等号名称
- sub-script 代表等号下面内容
- super-script 代表等号上面内容
8.常用公式
8.1 线性模型
h(\theta) = \sum_{j=0} ^n \theta_j x_j
\[h(\theta) = \sum_{j=0} ^n \theta_j x_j
\]
8.2 均方误差
J(\theta) = \frac{1}{2m}\sum_{i=0}^m(y^i - h_\theta(x^i))^2
\[J(\theta) = \frac{1}{2m}\sum_{i=0}^m(y^i - h_\theta(x^i))^2
\]
8.3 求积
H_c=\sum_{l_1+\dots +l_p}\prod^p_{i=1} \binom{n_i}{l_i}
\[H_c=\sum_{l_1+\dots +l_p}\prod^p_{i=1} \binom{n_i}{l_i}
\]
8.4 批梯度下降
\begin{align}
\frac{\partial J(\theta)}{\partial\theta_j}
& = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))\\
& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_j x^i_j-y^i)\\
&=-\frac1m\sum_{i=0}^m(y^i -h_\theta(x^i)) x^i_j
\end{align}
\[\frac{\partial J(\theta)}{\partial\theta_j} = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i))x^i_j
\]
\[\begin{align}
\frac{\partial J(\theta)}{\partial\theta_j}
& = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))\\
& = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_j x^i_j-y^i)\\
&=-\frac1m\sum_{i=0}^m(y^i -h_\theta(x^i)) x^i_j
\end{align}
\]