The future of you, waiting for you in the future.

Geoffrey

Long, long the pathway to Cold Hill;
Drear, drear the waterside so chill.

返回顶部

目标检测的评价指标(TP、TN、FP、FN、Precision、Recall、IoU、mIoU、AP、mAP)

1. TP TN FP FN

​ GroundTruth 预测结果

TP(True Positives): 真的正样本 = 【正样本 被正确分为 正样本】

TN(True Negatives): 真的负样本 = 【负样本 被正确分为 负样本】

FP(False Positives): 假的正样本 = 【负样本 被错误分为 正样本】

FN(False Negatives):假的负样本 = 【正样本 被错误分为 负样本】

2. Precision(精度)和 Recall(召回率)

Precision=TPTP+FP 预测正确的部分预测结果 的比例

Recall=TPTP+FN 预测正确的部分GroundTruth 的比例

3. IoU(Intersection over Union)

IoU=TPTP+FP+FN

4. AP

(1) 找出 预测结果 中 TP(正确的正样本) 和 FP(误分为正样本) 的检测框

设置IoU的阈值,如IoU=0.5

IoU值大于0.5 预测结果 正确;否则, 预测结果 错误,如下图所示

  • IoU=TPTP+FP+FN>0.5 预测结果:TP
  • IoU=TPTP+FP+FN<0.5 预测结果:FP

注意:这里的TP、FP与图示中的TP、FP在理解上略有不同

(2) 计算 不同置信度阈值 的 Precision、Recall

a. 设置不同的置信度阈值,会得到不同数量的检测框:

​ 阈值高,得到检测框数量少;

​ 阈值低,得到检测框数量多。

b. 对于 步骤a 中不同的置信度阈值得到 检测框(数量)=TP(数量)+FP(数量)

c. 计算Precision,按照上面步骤(1)中使用IoU计算TP、FP的方法,将步骤b中的检测框(数量)划分为TP(数量)、FP(数量)

Precision=TPTP+FP

d. 计算Recall,由于TP+FN是GroundTruth(即已知的检测框的数量),则可以得到:

Recall=TPTP+FN

e. 计算AP,不同置信度阈值会得到多组(Precision,Recall)

假设我们得到了三组(Precision,Recall):

(0.9, 0.2),(0.5, 0.2),(0.7, 0.6),如下图中所示

AP=上图中所围成的面积,即 AP = 0.9 x 0.2 + 0.7 x 0.4 = 0.46

5. mIoU、mAP

IoU和AP是对一个类别所计算的结果,mIoU和mAP是所有类结果的平均值。

原文:https://www.pianshen.com/article/20801175613/

posted @   Geoffreygau  阅读(5654)  评论(0编辑  收藏  举报
编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
点击右上角即可分享
微信分享提示

目录导航