PyTorch教程 | 1 图片数据建模流程范例
构建数据流程是实践过程中核心环节。熟悉pipeline的的构建过程,有助于理解不同代码的结构,也是实现自主创建网络的第一步。
使用Pytorch实现神经网络模型的一般流程包括:1,准备数据 2,定义模型 3,训练模型 4,评估模型 5,使用模型 6,保存模型。
1- 数据加载
在Pytorch中构建图片数据管道通常有三种方法。
第一种是使用 torchvision中的datasets.ImageFolder来读取图片然后用 DataLoader来并行加载。
第二种是通过继承 torch.utils.data.Dataset 实现用户自定义读取逻辑然后用 DataLoader来并行加载。
第三种方法是读取用户自定义数据集的通用方法,既可以读取图片数据集,也可以读取文本数据集。
2- 定义模型
使用Pytorch通常有三种方式构建模型:使用nn.Sequential按层顺序构建模型,继承nn.Module基类构建自定义模型,继承nn.Module基类构建模型并辅助应用模型容器(nn.Sequential,nn.ModuleList,nn.ModuleDict)进行封装。
3- 训练模型
Pytorch通常需要用户编写自定义训练循环,大致分为脚本形式训练循环,函数形式训练循环,类形式训练循环。
以下为详细示例代码
#1 准备数据 import torch from torch import nn from torch.utils.data import Dataset, Dataloader from torchvision import transforms, datasets #转换 transforms_train = transforms.Compose([transforms.ToTensor(), transforms.Scale(40), transforms.RandomHorizontalFlip(), transforms.RandomCrop(32),]) transforms_val = transforms.Compose([transforms.ToTensor()]) #加载 ds_train = datasets.ImageFolder("./data/cifar2/train/", transform = transform_train, target_transform= lambda t:torch.tensor([t]).float()) ds_valid = datasets.ImageFolder("./data/cifar2/test/", transform = transform_valid,target_transform= lambda t:torch.tensor([t]).float()) print(ds_train.class_to_idx) dl_train = Dataloader(ds_train, batch_size=50, shuffle=True, num_workers=3) dl_valid = DataLoader(ds_valid,batch_size = 50,shuffle = True,num_workers=3) #显示 %matplotlib inline %config InlineBackend.figure_format = 'svg' #查看部分样本 from matplotlib import pyplot as plt plt.figure(figsize=(8,8)) for i in range(9): img,label = ds_train[i] img = img.permute(1,2,0) ax=plt.subplot(3,3,i+1) ax.imshow(img.numpy()) ax.set_title("label = %d"%label.item()) ax.set_xticks([]) ax.set_yticks([]) plt.show() # Pytorch的图片默认顺序是 Batch,Channel,Width,Height for x,y in dl_train: print(x.shape,y.shape) break #2- 定义模型 #此处为继承nn.Module基类 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(in_channel=3, out_channels=32, kernel_size=3) self.pool = nn.Maxpool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5) self.dropout = nn.Dropout2d(p = 0.1) self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1)) self.flatten = nn.Flatten() self.linear1 = nn.Linear(64,32) self.relu = nn.ReLU() self.linear2 = nn.Linear(32,1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.conv1(x) x = self.pool(x) x = self.conv2(x) x = self.pool(x) x = self.dropout(x) x = self.adaptive_pool(x) x = self.flatten(x) x = self.linear1(x) x = self.relu(x) x = self.linear2(x) y = self.sigmoid(x) return y net = Net() print(net) import torchkeras torchkeras.summary(net, input_shape=(3, 32, 32)) #3 训练模型 #此处为函数形式训练循环 import pandas as pd from sklearn.metrics import roc_auc_score model = net model.optimizer = torch.optim.SGD(model.parameters(), lr=0.01) model.loss_func = torch.nn.BCELoss() model.metric_func = lambda y_pred, y_true: roc_auc_score(y_true.data.numpy(),y_pred.data.numpy()) model.metric_name = "auc" def train_step(model, features, label): #训练模式,dropout层发生作用 model.train() #梯度清零 model.optimizer.zero_grad() #正向传播求损失 predictions = model(features) loss = model.loss_func(predictions, labels) metric = model.metric_func(predictions, labels) #反向传播求梯度 loss.backward() model.optimizer.step() return loss.item(), metric.item() def valid_step(model,features,labels): # 预测模式,dropout层不发生作用 model.eval() # 关闭梯度计算 with torch.no_grad(): predictions = model(features) loss = model.loss_func(predictions, labels) metric = model.metric_func(parameters, labels) return loss.item(), metric.item() # 测试train_step效果 features,labels = next(iter(dl_train)) train_step(model,features,labels) def train_model(model, epochs, dl_train, dl_valid, log_step_freq): metric_name = model.metric_name dfhistory = pd.DataFrame(columns = ["epoch","loss",metric_name,"val_loss","val_"+metric_name]) print("Start Training...") nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print("=========="*8 + "%s"%nowtime) for epoch in range(1, epochs+1): # 1,训练循环------------------------------------------------- loss_sum = 0.0 metric_sum = 0.0 step = 1 for step, (features, labels) in enumerate(dl_train, 1): loss, metric = train_step(model, features, labels) # 打印batch级别日志 loss_sum += loss metric_sum += metric if step%log_step_freq == 0: print(("[step = %d] loss: %.3f, "+metric_name+": %.3f") % (step, loss_sum/step, metric_sum/step)) # 2,验证循环------------------------------------------------- val_loss_sum = 0.0 val_metric_sum = 0.0 val_step = 1 for val_step, (features,labels) in enumerate(dl_valid, 1): val_loss,val_metric = valid_step(model,features,labels) val_loss_sum += val_loss val_metric_sum += val_metric # 3,记录日志------------------------------------------------- info = (epoch, loss_sum/step, metric_sum/step, val_loss_sum/val_step, val_metric_sum/val_step) dfhistory.loc[epoch-1] = info # 打印epoch级别日志 print(("\nEPOCH = %d, loss = %.3f,"+ metric_name + \ " = %.3f, val_loss = %.3f, "+"val_"+ metric_name+" = %.3f") %info) nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print("\n"+"=========="*8 + "%s"%nowtime) print('Finished Training...') return dfhistory epochs = 20 dfhistory = train_model(model, epochs, dl_train, dl_valid, log_step_freq=50) #4 评估模型 #打印history print(dfhistory) #查看loss曲线 %matplotlib inline %config InlineBackend.figure_format = 'svg' import matplotlib.pyplot as plt def plot_metric(dfhistory, metric): train_metrics = dfhistory[metric] val_metrics = dfhistory['val_'+metric] epochs = range(1, len(train_metrics) + 1) plt.plot(epochs, train_metrics, 'bo--') plt.plot(epochs, val_metrics, 'ro-') plt.title('Training and validation '+ metric) plt.xlabel("Epochs") plt.ylabel(metric) plt.legend(["train_"+metric, 'val_'+metric]) plt.show() plot_metric(dfhistory,"loss") plot_metric(dfhistory,"auc") #5 使用模型 def predict(model, dl): model.eval() with torch.no_grad(): result = torch.cat([model.forward(t[0]) for t in dl]) return(result.data) y_pred_probs = predict(model, dl_valid) print(y_pred_probs) y_pred = torch.where(y_pred_probs>0.5, torch.ones_like(y_pred_probs), torch.zeros_like(y_pred_probs)) print(y_pred) #6 保存模型 torch.save(model.state_dict(), "./data/model_parameter.pkl") net_clone = Net() net_clone.load_state_dict(torch.load("./data/model_parameter.pkl")) predict(net_clone,dl_valid)