PyTorch简明教程 | 3-迁移学习实例
from __future__ import print_function, division import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import time import os import copy plt.ion() #1- 加载数据和预处理 # 训练的时候会做数据增强和归一化 # 而验证的时候只做归一化 data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } data_dir = '../data/' image_dataset = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: torch.utils.data.DataLoader(image_dataset[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']} data_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} class_names = image_datasets['train'].classes device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") #2- 可视化图片 def imshow(inp, title=None): inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.001) # 得到一个batch的数据 inputs, classes = next(iter(dataloaders['train'])) # 把batch张图片拼接成一个大图 out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) #3- 训练模型 #完成learning rate的自适应 和 保存最好的模型 def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # 每个epoch都分为训练和验证阶段 for phase in ['train', 'val']: if phase == 'train': scheduler.step() model.train() # 训练阶段 else: model.eval() # 验证阶段 running_loss = 0.0 running_corrects = 0 # 变量数据集 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # 参数梯度清空 optimizer.zero_grad() # forward # 只有训练的时候track用于梯度计算的历史信息。 with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # 如果是训练,那么需要backward和更新参数 if phase == 'train': loss.backward() optimizer.step() # 统计 running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # 保存验证集上的最佳模型 if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # 加载最优模型 model.load_state_dict(best_model_wts) return model #4- 可视化结果 def visualize_model(model, num_images=6): was_training = model.training model.eval() images_so_far = 0 fig = plt.figure() with torch.no_grad(): for i, (inputs, labels) in enumerate(dataloaders['val']): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) for j in range(inputs.size()[0]): images_so_far += 1 ax = plt.subplot(num_images//2, 2, images_so_far) ax.axis('off') ax.set_title('predicted: {}'.format(class_names[preds[j]])) imshow(inputs.cpu().data[j]) if images_so_far == num_images: model.train(mode=was_training) return model.train(mode=was_training) #5- fine-tuning 所有参数 #因为类别不一样需要删掉原来的全连接层,换成新的全连接层。这里我们让所有的模型参数都可以调整,包括新加的全连接层和预训练的层。 model_ft = models.resnet18(pretrained=True) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, 2) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() # 所有的参数都可以训练 optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) # 每7个epoch learning rate变为原来的10% exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25) #6- fine-tuning最后一层参数 #可以固定住前面层的参数,只训练最后一层,时间快一倍 model_conv = torchvision.models.resnet18(pretrained=True) for param in model_conv.parameters(): param.requires_grad = False # 新加的层默认requires_grad=True num_ftrs = model_conv.fc.in_features model_conv.fc = nn.Linear(num_ftrs, 2) model_conv = model_conv.to(device) criterion = nn.CrossEntropyLoss() # 值训练最后一个全连接层。 optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9) exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1) model_conv = train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=25)