P4915 帕秋莉的魔导书
题目描述:
洛谷
魔导书是一种需要钥匙才能看得懂的书,然而只有和书写者同等或更高熟练度的人才能看得见钥匙。因此,每本魔导书都有它自己的等级 \(a_i\),同时它也有自己的知识程度为 \(w_i\),现在我们想要知道,一个等级为 \(b_i\) 的生物(...),可以从这些魔导书中得到多少知识。
然而不幸的是,每个生物并不知道自己确切的等级,只有一个等级的大致范围,你需要计算出这个生物获得知识程度的期望值。
数据范围: 对于 100% 的数据,保证 \(1\leq n,m\leq 10^5\),对于其他数字,保证在 32 位带符号整数范围内(保证运算中所有的数均在 \(−2^{63}∼2^{63}−1\) 内)。
solution
首先,题目让我们求的是这个柿子
\(\large \displaystyle\sum_{i=x}^{y} tot[i] \over (y-x+1)\)
即 \(\large \displaystyle\sum_{i=x}^{y} tot[i] \over y-x+1\)
\(tot[i]\) 为 \(i\) 这个等级能看到的知识程度的总和。
我们可以以等级为区间,知识程度为权值。
那不就是区间和除以区间长度了吗?
看到区间和,我们就可以想到用线段树来维护。
但等级可能会达到2^32-1,所以我们考虑一下动态开点或者离散化.
当新添一本书后,等级大于他的都可以看到,就相当于从这本书的等级到inf的区间,加上这本书的知识程度。
查询操作,就是区间和除以区间长度就OK了。
一定要注意开 long long(不开long long 见祖宗)
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define LL long long
const int inf = 2147483536;
int n,m,x,y,opt,root,tot;
inline int read()
{
int s = 0, w = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){s = s * 10+ch -'0'; ch = getchar();}
return s * w;
}
struct Tree
{
struct node{
int lc,rc;
LL sum,add;
}tr[10000010];
void down(int o,int l,int r)//下放操作
{
if(tr[o].add)
{
int mid = (l+r)>>1;
if(!tr[o].lc) tr[o].lc = build();//如果没有子节点就新建一个
if(!tr[o].rc) tr[o].rc = build();
tr[tr[o].lc].add += tr[o].add;//正常的下放操作
tr[tr[o].rc].add += tr[o].add;
tr[tr[o].lc].sum += 1LL * tr[o].add * (mid-l+1);
tr[tr[o].rc].sum += 1LL * tr[o].add * (r-mid);
tr[o].add = 0;
}
}
int build()//新建一个节点
{
tot++;
tr[tot].lc = tr[tot].rc = tr[tot].sum = 0;
return tot;
}
void insert(int root,int L,int R,int x,int y,int val)//区间修改
{
if(x <= L && y >= R)
{
tr[root].add += val;
tr[root].sum +=1LL * val * (R-L+1);
return;
}
int mid = (L+R)>>1;
down(root,L,R);//下放标记
if(x <= mid)
{
if(!tr[root].lc) tr[root].lc = build();//一定要新开节点,不然就会RE
insert(tr[root].lc,L,mid,x,y,val);
}
if(y > mid)
{
if(!tr[root].rc) tr[root].rc = build();
insert(tr[root].rc,mid+1,R,x,y,val);
}
tr[root].sum = tr[tr[root].lc].sum + tr[tr[root].rc].sum;//up操作
}
LL ask(int root,int L,int R,int x,int y)//区间和
{
LL ans = 0;
if(x <= L && y >= R){return tr[root].sum;}
int mid = (L+R)>>1;
down(root,L,R);
if(!tr[root].lc) tr[root].lc = build();
if(!tr[root].rc) tr[root].rc = build();
if(x <= mid) ans += ask(tr[root].lc,L,mid,x,y);
if(y > mid) ans += ask(tr[root].rc,mid+1,R,x,y);
return ans;
}
}tree;
int main()
{
n = read(); m = read();
root = tree.build();
for(int i = 1; i <= n; i++)
{
x = read(); y = read();
tree.insert(root,1,inf,x,inf,y);//从x到inf区间加y
}
for(int i = 1; i <= m; i++)
{
opt = read(); x = read(); y = read();
if(opt == 1)
{
LL tmp = tree.ask(root,1,inf,x,y);
double ans = (double) tmp / (double)(y-x+1);
printf("%.4lf\n",ans);
}
if(opt == 2)
{
tree.insert(root,1,inf,x,inf,y);
}
}
return 0;
}