[bzoj4034][HAOI2015]树上操作——树状数组+dfs序
Brief Description
您需要设计一种数据结构支持以下操作:
- 把某个节点 x 的点权增加 a 。
- 把某个节点 x 为根的子树中所有点的点权都增加 a 。
- 询问某个节点 x 到根的路径中所有点的点权和。
Algorithm Design
我们考察操作对于查询的贡献。
对于操作1,如果节点y是节点x的后代,那么可以贡献\(a\)
对于操作2,如果节点y是节点x的后代,那么可以贡献\(a*(dep_y-dep_x+1)\)
我们可以使用两个树状数组来维护贡献。
Code
#include <cstdio>
#define lowbit(i) (i) & -(i)
const int maxn = 101000;
#define ll long long
ll bit[2][maxn];
ll n, m, cnt = 0;
void change(ll id, ll pos, ll val) {
for (ll i = pos; i <= n; i += lowbit(i)) {
bit[id][i] += val;
}
}
ll query(ll id, ll pos) {
ll ans = 0;
for (ll i = pos; i; i -= lowbit(i)) {
ans += bit[id][i];
}
return ans;
}
struct edge {
ll to, next;
} e[maxn << 1];
ll l[maxn], r[maxn], dfn = 0, val[maxn], deep[maxn], head[maxn], q[maxn];
void add(ll x, ll y) {
e[++cnt].to = y;
e[cnt].next = head[x];
head[x] = cnt;
}
void add_edge(ll x, ll y) {
add(x, y);
add(y, x);
}
void dfs(ll x, ll fa) {
l[x] = ++dfn;
q[dfn] = x;
for (ll i = head[x]; i; i = e[i].next) {
if (e[i].to != fa) {
deep[e[i].to] = deep[x] + 1;
dfs(e[i].to, x);
}
}
r[x] = dfn;
}
int main() {
// freopen("haoi2015_t2.in", "r", stdin);
// freopen("haoi2015_t2.out", "w", stdout);
scanf("%lld %lld", &n, &m);
for (ll i = 1; i <= n; i++) {
scanf("%lld", &val[i]);
}
for (ll i = 1; i < n; i++) {
ll x;
ll y;
scanf("%lld %lld", &x, &y);
add_edge(x, y);
}
dfs(1, 0);
for (ll i = 1; i <= n; i++) {
change(1, l[i], val[i]);
change(1, r[i] + 1, -val[i]);
}
while (m--) {
ll opt, x, y;
scanf("%lld %lld", &opt, &x);
if (opt == 1) {
scanf("%lld", &y);
change(1, l[x], y);
change(1, r[x] + 1, -y);
}
if (opt == 2) {
scanf("%lld", &y);
change(0, l[x], y);
change(1, l[x], -deep[x] * y + y);
change(0, r[x] + 1, -y);
change(1, r[x] + 1, deep[x] * y - y);
}
if (opt == 3) {
printf("%lld\n", query(0, l[x]) * deep[x] + query(1, l[x]));
}
}
}