[bzoj1070][SCOI2007]修车——费用流
题目大意:
题解:
本题和(POJ3686)[http://poj.org/problem?id=3686]一题一模一样,而且还是数据缩小以后的弱化版QAQ,《挑战程序设计竞赛》一书中有详细解答,我写一下大致的解法。
我们把每个维修员拆成n个点,由每个车子向每个维修员连接n条边,分别代表是该维修员维修的第i个车子。
容易知道,如果车辆i在维修员j处是第k个修的,那么费用就一定会包括k*z[i][j](车辆i的等待时间也包括在内)。
跑一边费用流就好辣。。
代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
const int maxn = 65;
const int inf = 0x3f3f3f;
const int maxm = 15;
const int maxv = maxn * maxm * 2;
int z[maxn][maxm];
int n, m, v, s, t;
struct edge {
int from, to, cap, cost;
};
vector<edge> edges;
vector<int> G[maxn * maxm * 2];
void read() {
memset(z, 0, sizeof(z));
scanf("%d %d", &m, &n);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
scanf("%d", &z[i][j]);
}
int dist[maxv], pre[maxv], a[maxv], inq[maxv];
void add_edge(int s, int t, int cap, int cost) {
edges.push_back((edge){s, t, cap, cost});
edges.push_back((edge){t, s, 0, -cost});
int m = edges.size();
G[s].push_back(m - 2);
G[t].push_back(m - 1);
}
bool spfa(int s, int t, int &flow, int &cost) {
for (int i = 0; i < v; i++)
dist[i] = inf;
memset(pre, -1, sizeof(pre));
memset(inq, 0, sizeof(inq));
queue<int> q;
q.push(s);
dist[s] = 0;
inq[s] = 1;
a[s] = inf;
while (!q.empty()) {
int v = q.front();
q.pop();
inq[v] = 0;
for (int i = 0; i < G[v].size(); i++) {
edge &e = edges[G[v][i]];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost) {
a[e.to] = min(a[v], e.cap);
pre[e.to] = G[v][i];
dist[e.to] = dist[v] + e.cost;
if (!inq[e.to]) {
q.push(e.to);
inq[e.to] = 1;
}
}
}
}
if (dist[t] >= inf)
return false;
flow += a[t];
cost += dist[t] * a[t];
int u = t;
while (u != s) {
edges[pre[u]].cap -= a[t];
edges[pre[u] ^ 1].cap += a[t];
u = edges[pre[u]].from;
}
return true;
}
int mcmf(int s, int t) {
int flow = 0;
int cost = 0;
while (spfa(s, t, flow, cost))
;
return cost;
}
void solve() {
// 0-n-1 车子
// n-2n-1 一号工作员
// 2n-3n-1 二号工作员
s = n + n * m, t = s + 1, v = t + 1;
for (int i = 0; i < n; i++)
add_edge(s, i, 1, 0);
for (int j = 0; j < m; j++) {
for (int k = 0; k < n; k++) {
add_edge(n + j * n + k, t, 1, 0);
for (int i = 0; i < n; i++) {
add_edge(i, n + j * n + k, 1, (k + 1) * z[i][j]);
}
}
}
double ans = (double)mcmf(s, t) / n;
printf("%.2f\n", ans);
}
int main() {
read();
solve();
return 0;
}