高等代数第3讲——n阶行列式
摘要:
在上一讲中,两方程的二元一次方程组有没有唯一解可以用它的系数行列式来判别;有唯一解时,解可以用系数行列式以及用常数项替换其相应的列得到的行列式来表示。 对于n个方程的n元线性方程组有没有类似的结论呢?这需要有n阶行列式概念。在讨论之前,需要引入一些相关的概念。定义1 n个不同的自然数的一个全排列称为一个n元排列。例如,自然数1,2,3形成的3元排列有:123,132,213,231,312,321。给定n个不同的自然数,它们形成的全排列有n!个。因此,对于给定的n个不同的自然数,n元排列的总数是n!。 4元排列2341中,2与3形成的数对23,小的数在前,大的数在后,此时称这一对数构成... 阅读全文
posted @ 2013-06-04 09:07 湘厦人 阅读(5662) 评论(0) 推荐(0) 编辑