跟小D每日学口语

标量Kalman滤波器

译:http://www.swarthmore.edu/NatSci/echeeve1/Ref/Kalman/ScalarKalman.html


该文档简单介绍输入为标量的卡尔曼滤波器的导出,分以下几节:

  • 定义问题
  • 寻找卡尔曼滤波器增益K
  • 寻找先验方差
  • 寻找后验方差
  • 相关结果回顾
  • 与常用符号记法的比较
  • 例子
  • 扩展
  • 参考文献

定义问题

离散时间线性系统经常描述为如下状态方程:

         式 1

其中,状态 $x_j$是标量,$a$和 $b$是常量,输入 $u_j$是一个标量;$j$是时间变量,注意,许多课本没有包括输入项(可视之为零),许多课本用变量 $k$表示时间,而我选择 $j$作为时间变量,因为在下文中 $k$用作卡尔曼滤波器增益。方程1图示如下,其中 $T$模块表示一个单位的延迟。

图 1

现在假设过程引入加性噪声:

         式 2

噪声 $w$是均值为零方差为 $Q$的的白噪声,且与输入不相关。于是过程可描述如下:

图 2

对于如上述示的情形,一个典型的问题是:我们能否对信号 $x$进行滤波以便将噪声 $w$的影响减到最小?事实证明答案是肯定的。不过,利用卡尔曼滤波器,我们可以做得更多。

我们假设信号 $x$不能被直接测量,而可测量的是 $z$。

         式 3

测量值 $z$依赖于 $x$的当前值,并由增益 $h$确定。另外,测量的自身噪声为 $v$。该噪声均值为零、方差为 $R$且与输入或噪声 $w$不相关。这两类噪声相互独立且与输入也独立。

图 3

卡尔曼滤波的任务现在可表述为:对于一个如上图所示的系统,我们怎么样对 $z$进行滤波来估计 $x$以使得 $w$和 $v$的影响最小?

要对状态(输出)进行估计,一种看似简单而合理的做法是复制系统结构,这种简单(根本无用)的方法可以得到 $x_j$的估计(记为 $\hat x_j$),图示如下:

图 4

这种方法有两个明显的缺点。首先,这里没有修正。如果我们无法确切知道量 $a,b$或者 $h$(或者初始值 $x_0$),估计值不会跟踪真实值 $x$。第二点,我们没有补偿加性噪声 $w$和 $v$。一种改进的措施是将两者考虑进去,如下图所示:

图 5

该图和前一个十分相似。注意到的第一个不同点是原来 $x_j$的估计现在记为 $\hat x_j^ - $;我们称之为先验估计。

4

我们用这个先验估计去预测输出,即输出的估计 $\hat z_j$。输出的真实值和其估计之间的差称为残差,或新息。

      式 5

如果残差较小,通常意味着我们的估计较好;如果残差较大,则说明估计不好。我们可以用这一信息来改善我们对 $x_j$的估计;我们称新的估计为后验估计 $\hat x_j$。如果残差较小,则对估计的修正也较小。当残差增大时,修正也增大。相关的方程是(根据框图):

式 6

目前唯一的任务就是寻找用来改善我们估计的量 $k$,这一过程是卡尔曼滤波的核心。

注意:我们试图寻找最优的估计,目前我们只优化增益 $k$的值。我们已经假设原系统的拷贝(即增益 $a,b$ 和 $h$分布如图所示)用来进行估计。这样自然会提出一个问题:“这样得到的估计是最优的吗?”换句话说,为了估计状态,我们简单地拷贝原来的系统,或者还有更好的办法?如上所示,这样的估计被证明是最优线性估计。详见这里


寻找卡尔曼滤波器增益K

开始之前定义估计误差。这里有两类误差,一类是先验误差 $e_j^-$,另一类是后验误差 $e_j$。每一类误差都是真实值 $x_j$与估计(先验或后验)的差值。

     式 7

与每一类误差相关的均方差或方差:

    式 8

其中运算符E{ }表示期望或平均值。这些定义将用于计算 $k$值。

卡尔曼滤波是通过选择适当的 $k$值来最小化后验误差 $p_j$。我们先将式7代入式8,之后再代入式6。

     式9

为了求解最小化方差的 $k$值,对表达式关于 $k$求导并令其为零。要有耐心,化简之前,表达式有点复杂。

  式 10

我们用最后一个式子来求解 $k$。 

   式 11

这个表达式依然比较复杂。简单起见,我们分别考虑分子和分母。

我们先看分子,将3式表示的 $z_j$代入其中。

测量噪声 $v$与输入及 $x$的后验估计都不相关,所以:

      式 12

分子简化为:

   式 13

同理,考虑分母。

  Scalar19 式 14

我们再次利用式12的正交条件,最后一项为零,所以:

  式 15

其中,上式中我们用了式13来化简第一项,而第二项是测量噪声的定义。

利用分子分母表达式,我们最终得到一个简化的式子 $k$:

        式 16

然而,依然存在一个问题,因为表达式中需要一个先验方差的值,反过来,它需要知道系统变量 $x_j$。因此,我们下一步任务就是先验方差的估计。

开始之前,让我们仔细看看上式。 首先,$k$不是常量,每次迭代都会改变。正因如此,在书写时应该加个下标(即 $k_j$)。下文中我们要格外注意这点。

接下来,更重要的是我们考查当式16中的每一项改变时将发生什么。

$\bullet $如果先验误差很小,相应地,$k$也很小,所以我们的校正也很小。换句话说,我们可以忽略当前的测量值并用之前的估计作为新的估计。正如所希望的那样——如果我们最初的估计(先验估计)很好(即误差小),则仅需很小的修正。

$\bullet $如果先验误差很大(这样的话,分母中的测量噪声项 $R$将无足轻重),于是 $k=1/h$。实质上告诉我们丢弃先验估计而用当前(测量)输出值来估计状态。代入6式可以清楚地看出这一点。另外,正如所希望的那样——如果先验误差很大,我们应该丢弃先验估计,而应该用当前测量的输出值来估计状态。

       

$\bullet $如果测量噪声 $R$很大,$k$就会很小,所以我们丢弃当前的测量以得到新的估计。正如所希望的那样——如果测量噪声大,则测量值的可信度低,于是估计值应更多地依靠先前的估计。


寻找先验方差

根据定义直接可以得到先验方差。

由前述可知,中间项可以去掉,因为过程噪声与前一时刻状态及其先验估计都不相关。

        式 17

所以 

        式 18

然而并未结束,因为我们还需要后验估计 $p_j$。


寻找后验方差

与先验方差类似,我们通过其定义来寻找后验方差。

   式 19

由前述可知,中间项可以去掉,因为测量噪声与当前状态及其先验估计不相关。

      式 20

所以

     式 21

通过 $k$的定义(式16的变形)我们可以简化上式

       式 22

将式22代入式21得到

     式 23


相关结果回顾

任何卡尔曼滤波操作都是从系统描述开始,其中包括增益 $a,b$和 $h$,状态 $x$,系统输入 $u$,输出 $z$,时间索引 $j$。

该过程有两个阶段,预测阶段(仅依靠之前输出的测量值去计算下一状态的估计值),修正阶段(用当前估计值去改善预测的结果)。

预测阶段

我们用前一时刻状态的估计与当前的输入来得到(当前)状态的先验估计。

我们现在可以计算先验方差

注意到以上两式用到前一时刻状态的后验估计和方差。因此卡尔曼滤波的首次迭代时要求这两个值的估计(通常只是猜测)。确切的估计往往并不重要,因为随着时间的推移,会收敛到正确的值。一个不好的的初始估计只是会导致收敛的时间更长。

修正阶段

为了修正先验估计,我们需要用到卡尔曼滤波器增益 $k$。

该增益用于改善(修正)先验估计并使我们得到后验估计。

现在我们可以计算后验方差

关于卡尔曼滤波器增益 $k_j$的说明

$\bullet $如果先验误差很小,$k$相应地也很小,所以修正也很小。换句话说,我们可以忽略当前的测量而仅用过去的估计作为新的估计。正如所希望的那样——如果我们最初的估计(先验估计)很好(即误差小),则仅需很小的修正。

$\bullet $如果先验误差很大(这样的话,分母中的测量噪声项 $R$将无足轻重),于是 $k=1/h$。实质上告诉我们丢弃先验估计而用当前(测量)输出值来估计状态。代入6式可以清楚地看出这一点。另外,正如所希望的那样——如果先验误差很大,我们应该丢弃先验估计,而应该用当前测量的输出值来估计状态。

$\bullet $如果测量噪声 $R$很大,$k$就会很小,所以我们丢弃当前的测量以得到新的估计。正如所希望的那样——如果测量噪声大,则测量值的可信度低,于是估计值应更多地依靠先前的估计。


与常用符号记法的比较

本文档符号的记法参考[1]。更常用的记法如下。

变量 该文档中的记法 通常记法
时间变量 j k
状态 xj x(k)
系统增益 a, b, h a, b, h  (注意:b通常为0)
输入 uj u(k)  (注意:通常没有输入)
输出 zj z(k)
增益 kj Kk
先验估计
后验估计
先验方差 p- p(k|k-1) 或 p(k+1|k)
后验方差 pj p(k|k)  p(k+1|k+1)

记法

可以读作“基于时刻 $k-1$的信息对时刻 $k$时状态 $x$的估计”;换句话说,该估计仅依赖过去的输出,或先验估计。记法

可以读作“基于时刻 $k$的信息对时刻 $k$时状态的估计”;换句话说,该估计依赖过去和当前的输出,或后验估计。


例子

  1. 一个常量估计的例子 (相应的Matlab 代码).

  2. 一阶过程估计的例子 (相应的Matlab 代码).


扩展

基于矩阵(更高阶系统)的卡尔曼滤波器是此处所介绍的标量滤波器的单位扩展。其结果在这里给出。完整的数学描述见文献[3]。


参考文献

[1] An Introduction to Kalman Filters, G Welch and G Bishop, http://www.cs.unc.edu/~welch/kalman/kalman_filter/kalman.html.  See also their other introductory information on Kalman Filters.

[2] Handbook of Digital Signal Processing, D Elliot ed, Academic Press, 1986.

[3] Digital and Kalman filtering : an introduction to discrete-time filtering and optimum linear estimation,  SM Bozic, Halsted Press, 1994.

[4] An Engineering Approach to Optimal Control and Estimation Theory, GM Siouris, John Wiley & Sons, 1996.

[5] Statistical and Adaptive Signal Processing, DG Manolakis, VK Ingle, SM Kogon, McGraw Hill, 2000.

[6] Smoothing, Filtering and Prediction - Estimating The Past, GA Einicke, a free on-line text:http://www.intechopen.com/books/smoothing-filtering-and-prediction-estimating-the-past-present-and-future


posted on 2012-09-20 12:04  湘厦人  阅读(948)  评论(0编辑  收藏  举报

导航