机器学习-分类算法-决策树,随机森林10
决策树:
决策树的思想来源非常朴素,程序设计中的条件分支机构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法。
信息和消除不确定性是相联系的
信息增益:当得知一个特征后,减少的信息熵的大小
决策树的分类依据之一:信息增益
泰坦里克号数据来源:http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,export_graphviz
def decision():
# 决策树对泰坦里克号进行预测生死
# 获取数据
titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")
# 处理数据,找出特征值目标值
x = titan[["pclass","age","sex"]]
y = titan["survived"]
print(x)
# 处理缺失值
x["age"].fillna(x["age"].mean(),inplace=True)
# 进行数据的分割 训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 进行特征工程处理-->类别 one_hot编码
dict = DictVectorizer(sparse=False)
x_train = dict.fit_transform(x_train.to_dict(orient="records"))
print(dict.get_feature_names())
x_test = dict.transform(x_test.to_dict(orient="records"))
print(x_train)
# 使用决策树进行预测
dec = DecisionTreeClassifier()
dec.fit(x_train,y_train)
# 预测准确率
print("预测准确率:",dec.score(x_test,y_test))
# 导出决策树的结构
export_graphviz(dec,out_file="./tree.dot",feature_names=['年龄', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', '女性', '男性'])
return None
if __name__=='__main__':
decision()
集成学习方法-随机森林
例如:如果训练了5棵树,其中4棵树结果都是True 1个树结果是FALSE 哪个最终结果就是True
随机森林建立多颗决策树的过程:
N个样本 M个特征
1,单颗树建立过程:
- 随即在n个样本中选择一个样本,重复n次(样本可能重复)
- 随机在m个特征当中选出m个特征
2,建立多颗决策树: - 样本,特征大多不一样 随机有返回的抽样(bootstrap)
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.tree import DecisionTreeClassifier,export_graphviz
from sklearn.ensemble import RandomForestClassifier
def decision():
# 决策树对泰坦里克号进行预测生死
# 获取数据
titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")
# 处理数据,找出特征值目标值
x = titan[["pclass","age","sex"]]
y = titan["survived"]
print(x)
# 处理缺失值
x["age"].fillna(x["age"].mean(),inplace=True)
# 进行数据的分割 训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 进行特征工程处理-->类别 one_hot编码
dict = DictVectorizer(sparse=False)
x_train = dict.fit_transform(x_train.to_dict(orient="records"))
print(dict.get_feature_names())
x_test = dict.transform(x_test.to_dict(orient="records"))
print(x_train)
# 随机森林进行预测(超参数调优)
rf = RandomForestClassifier()
param = {"n_estimators":[120,200,300,500,800,1200],"max_depth":[5,8,15,25,30]}
# 网格搜索交叉验证
gc = GridSearchCV(rf,param_grid=param,cv=2)
gc.fit(x_train,y_train)
print("准确率:",gc.score(x_test,y_test))
print("查看选择的模型:",gc.best_params_)
return None
if __name__=='__main__':
decision()
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步