86.图像的梯度

可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导: 
图像梯度: G(x,y) = dx i + dy j; 
dx(i,j) = I(i+1,j) - I(i,j); 
dy(i,j) = I(i,j+1) - I(i,j); 
其中,I是图像像素的值(如:RGB值),(i,j)为像素的坐标。 
图像梯度一般也可以用中值差分: 
dx(i,j) = [I(i+1,j) - I(i-1,j)]/2; 
dy(i,j) = [I(i,j+1) - I(i,j-1)]/2; 

图像边缘一般都是通过对图像进行梯度运算来实现的。

 

图像梯度的最重要性质是,梯度的方向在图像灰度最大变化率上,它恰好可以反映出图像边缘上的灰度变化 

上面说的是简单的梯度定义,其实还有更多更复杂的梯度公式。

posted @ 2016-07-19 10:55  geekite  阅读(263)  评论(0编辑  收藏  举报