cv_gordon

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: :: :: 管理 ::

题目:

 

 

思路一:

动态规划。创建一个mxn的二维数组,数组内存储到达每个点的路径数量N。动态规划推导式,N(i,j) = N(i-1, j) + N(i, j-1)。

 

思路二:

从左上角出发,终点是右下角,每次只能向右走(R)或者向下走(D)。总共需要向右移动 n-1 次,向下移动 m-1 次,一共要移动 m+n-2 次。求从起点到终点的所有路径,问题可以转换为,有 m+n-2 个抽屉,有 n-1 把钥匙,每个抽屉最多只能放1把钥匙,有多少种放置方案。排列组合问题。

编程计算排列组合,注意一点,分子和分母的阶乘运算导致int类型的变量溢出

class Solution {
public:
    int uniquePaths(int m, int n) {
        double result = 1.0;
        int remain = 1;
        
        int num = min(m-1, n-1);
        
        for(int i = 0; i < num; ++i) {
            if( ((m+n-2-i)%(i+1)) == 0 )    // 单项实现整除
                result *= ((m+n-2-i)/(i+1));
            else {
                if( result/(i+1) > int(result/(i+1)) )   // 前几项的积能够整除(i+1)
                    result /= (i+1);
                else                       // 前几项的积无法整除(i+1)
                    remain *= (i+1);
                
                result *= (m+n-2-i);
            }
        }
        
        result /= remain;
        return result;
    }
};

 

posted on 2019-10-25 14:26  cv_gordon  阅读(191)  评论(0编辑  收藏  举报