元表
元表操作:
setmetatable(table, metatable)
getmetatable(table)
元方法操作:
metatable.元方法 = function (可接受参数)
(函数体)
end
元方法:
算数运算符:__add(加法)[+]、__mul(乘法)[*]、__sub(减法)[-]、__div(除法)[/]、__unm(相反数)[-]、__mod(取模)[%]、__pow(乘幂)[^]。
逻辑运算符:__eq(等于)[=]、__lt(小于)[<]、__le(小于等于)[<=]。
其他运算符:__concat(连接)[..]、__len(取长度)[#]。
其他元方法:
__tostring:返回值(可接受参数:table)
__call:函数调用(可接受参数:table, key)
__metatable:保护元方法(字符串)
__index:查找表索引(可接受参数:table, key)
__newindex:添加新索引(可接受参数:table, key, value)
Metatable和Metamethod
Metatable和Metamethod是用来干啥的?它们可以使得表a和b的表达式“a + b”变得有意义,其中metatable使两个不相关的表a和b之间可以进行操作,而操作的具体行为比如说"+"由metamethod来具体定义。
Metatable和Metamethod大多数地方都翻译成“元表”和“元函数”,这是一种直译,相当不直观。根据Metatable的用法,我倾向于将Metatable翻译成关联表,Metamethod翻译成关联函数。通过给两个table设置Metatable可以使两个table产生联系,然后对两个table进行一些操作,具体的操作行为由Metamethod来定义。下面的例子中,在对表t1和t2设置关联表mt,并在mt中定义关联函数__add后,就可以对这两个表进行"+"相加操作了。
t1 = {1, 2, 3}
t2 = {4,5,6,7,8}
mt = {}
mt.__add = function(a, b)
local ret = 0
for _, v in pairs(a) do
ret = ret + v
end
for _, v in pairs(b) do
ret = ret + v
end
return ret
end
setmetatable(t1, mt)
setmetatable(t2, mt)
print(t1 + t2)
从上面的代码中可以看到关联表就是一个表,而关联函数就是一个函数。当碰到表达式"t1+t2"时,Lua首先查找他们的关联表,找到关联表mt后,会在mt中找与相加操作对应的关联函数__add,找到__add后就将t1和t2作为参数来执行该函数,最后返回结果。
下面是一个使用关联表来对集合(用table实现的集合)进行操作的示例,实例中定义了集合的并集、交集、比较等运行:
Set = {}
--专门用来作为metatable,定义在Set里面以免影响外部的命名空间
Set.mt = {}
--转化为string
Set.tostring = function (set)
local s = "{"
local sep = " "
for e in pairs(set) do
s = s .. sep .. e
sep = ", "
end
return s.."}"
end
--打印
Set.print = function(s)
print(Set.tostring(s))
end
Set.mt.__tostring = Set.tostring
--新建一个集合
Set.new = function (t)
local set = {}
setmetatable(set, Set.mt) --指定所创建集合的metatable
for _, l in ipairs(t) do set[l] = true end
return set
end
--并集
Set.union = function (a,b)
local res = Set.new{}
for k in pairs(a) do res[k] = true end
for k in pairs(b) do res[k] = true end
return res
end
--给metatable增加__add函数(metamethod),当Lua试图对两个集合相加时,将调用这个函数,以两个相加的表作为参数
Set.mt.__add = Set.union
--交集
Set.intersection = function (a,b)
local res = Set.new{}
for k in pairs(a) do
res[k] = b[k]
end
return res
end
--定义集合相乘操作为求交集
Set.mt.__mul = Set.intersection
--先定义"<="操作,然后基于此定义"<"和"="
Set.mt.__le = function (a, b)
for k in pairs(a) do
if not b[k] then return false end
end
return true
end
--小于
Set.mt.__lt = function(a, b)
return a<=b and not (b <= a)
end
--等于
Set.mt.__eq = function(a, b)
return a <= b and b <= a
end
--测试
s1 = Set.new{1, 2, 3}
s2 = Set.new{10, 20, 30, 40, 50}
print(getmetatable(s1))
print(getmetatable(s2))
s3 = s1 + s2 --等同于Set.union(s1, s2)
print(s3)
print(s3 * s2)
print(s1 <= s3)
print(s1 == s3)
print(s1 < s3)
print(s1 >= s3)
print(s1 > s3)
--起保护作用,getmetatable将返回这个域的值,而setmettable将会出错
Set.mt.__metatable = "not your business"
print(getmetatable(s1))
setmetatable(s1, {})
当Lua试图对两个表进行相加时,他会检查两个表是否有一个表有Metatable,并且检查Metatable是否有__add域。如果找到则调用这个__add函数(所谓的Metamethod)去计算结果。当两个表有不同的Metatable时,以谁的为准呢?Lua选择metamethod的原则:
(1)如果第一个参数存在带有__add域的metatable,Lua使用它作为metamethod,和第二个参数无关;
(2)否则,第二个参数存在带有__add域的metatable,Lua使用它作为metamethod;
(3)否则,报错。
Lua中定义的常用的Metamethod如下所示:
算术运算符的Metamethod:__add(加运算)、__mul(乘)、__sub(减)、__div(除)、__unm(负)、__pow(幂),__concat(定义连接行为)。
关系运算符的Metamethod:__eq(等于)、__lt(小于)、__le(小于等于),其他的关系运算自动转换为这三个基本的运算。
库定义的Metamethod:__tostring(tostring函数的行为)、__metatable(对表getmetatable和setmetatable的行为)。
注意:__metatable不是函数,而是一个变量。假定你想保护你的集合使其使用者既看不到也不能修改metatables。如果你对metatable设置了__metatable的值,getmetatable将返回这个域的值,而调用用setmetatable将会出错:
注意:相等比较从来不会抛出错误,如果两个对象有不同的metamethod,比较的结果为false,甚至可能不会调用metamethod。这也是模仿了Lua的公共的行为,因为Lua总是认为字符串和数字是不等的,而不去判断它们的值。仅当两个有共同的metamethod的对象进行相等比较的时候,Lua才会调用对应的metamethod。
print总是调用tostring来格式化它的输出,tostring会首先检查对象是否存在一个带有__tostring域的metatable。
表相关的Metamethod:
(1)__index metamethod:在继承中使用较多。当访问表不存在的一个域时,会触发Lua解释器去查找__index metamethod,如果不存在,则返回nil,否则由__index metamethod返回结果。
Window = {x = 0, y = 0, width = 100, height = 100}
mt = {}
mt.__index = function(table, key)
return Window[key]
end
w = {x = 10, y = 20}
setmetatable(w, mt)
print(w.width)
可以看到w没有width域,但有关联表mt,且关联表有__index,因此w.width会触发mt.__index的调用(Lua会将w作为第一个参数、width作为第二个参数来调用该函数)。
__index除了作为一个函数,还可以直接作为一个表来使用当__index是一个表时,Lua会直接在这个表中查找width域。因此代码也可以像这样来写:
Window = {x = 0, y = 0, width = 100, height = 100}
mt = {}
mt.__index = Window
w = {x = 10, y = 20}
setmetatable(w, mt)
print(w.width)
rawget(table, index)函数获取表中指定域的值,该函数可以绕过metamethod,直接返回表的域信息,看下面这个例子:
Window = {x = 0, y = 0, width = 100, height = 100}
mt = {}
mt.__index = function(table, key) return Window[key] end
w = {x = 10, y = 20}
setmetatable(w, mt)
print(w.width) --100
print(rawget(w, "width")) --nil
print(rawget(w, "x")) --10
看上面倒数第二行,rawget(w, "width")访问不存在的域不会触发查找__index。
(2)__newindex metamethod:__newindex metamethod用来对表更新,__index则用来对表访问。
当给表的一个不存在的域赋值时(比如w.add = 1),会触发Lua查找__newindex,如果不存在__newindex,则像一般的赋值行为一样导致表添加了一个域。
(1)不存在__newindex,则像一般的赋值行为一样导致表添加了一个域(w多了一个域add,值为1)
(2)存在__newindex,则不进行赋值操作,而是由__newindex拦截了赋值操作,并且将(table、域名、值)作为参数调用__newindex。
也就是说,__newindex可以使得任何对表的添加元素的行为都要经过__newindex,这确实是一个很好的把关。
rawset(t, k, v)函数也是一个等同于赋值的操作(w.add = 1相当于rawset(w, "add", 1)),但调用该函数可以绕过metamethod,即不会导致__newindex的调用:
mt = {}
mt.__newindex = function(table, key, value)
rawset(table, key, value) --这里不能写成table.key = value;因为这个给不存在域的赋值操作又会导致__newindex的调用,因而陷入死循环
end
w = {x = 10, y = 20}
setmetatable(w, mt)
w.add = 1
print(w.add) -- 1
和__index一样,__newindex也可以是一个表,如果__newindex是一个表,会导致对指定的那个表而不是原始的表进行赋值操作。
Window = {x = 0, y = 0, width = 100, height = 100}
mt = {}
mt.__newindex = Window
w = {x = 10, y = 20}
setmetatable(w, mt)
w.add = 1
print(w.add) --nil
print(Window.add) --1
赋值操作导致Windows添加了一个元素add,而w不影响。
当__index和__newindex混合使用时,一定要注意区分每个行为都干了什么事情:
Window = {x = 0, y = 0, width = 100, height = 100}
mt = {}
mt.__index = Window
mt.__newindex = Window
w = {x = 10, y = 20}
setmetatable(w, mt)
w.add = 1
print(w.add) --1
print(Window.add) --1
__newindex为表时,w.add=1表示给Window添加了add,但通过__index,w也能访问到Window的add。
再看下面这个例子:
Window = {x = 0, y = 0, width = 100, height = 100}
mt = {}
mt.__index = function(table, key)
return Window[key]
end
mt.__newindex = function(table, key, value)
rawset(table, key, value)
end
w = {x = 10, y = 20}
setmetatable(w, mt)
w.add = 1
print(w.add) -- 1
print(Window.add) -- nil
__newindex为函数时,w.add直接给w添加了add域,但Window并不存在add。所以结论是:当__newindex是函数时,给目标表w添加域;当__newindex是表时,给指向表添加域。
关于__index和__newindex一定要注意区分,什么时候进入__index,什么时候进入__newindex:
Window = {x = 0, y = 0, width = 100, height = 100}
mt = {}
mt.__index = function(table, key)
print("going here __index")
return Window[key]
end
w = {x = 10, y = 20}
setmetatable(w, mt)
s = w.width -- going here __index 访问语句会进入__index
w.width = 1 -- 赋值语句不会进入__index,这里会导致w表添加width域
print(w.width) -- 1
print(rawget(w, "width")) -- 1
print(Window.width) -- 100
访问语句进入__index,赋值语句不进入__index。
mt = {}
mt.__newindex = function(table, key, value)
print("going here __newindex")
rawset(table, key, value)
end
w = {x = 10, y = 20}
setmetatable(w, mt)
s = w.add -- 访问语句不会进入__newindex
w.add = 1 -- going here __newindex 赋值语句进入__newindex
print(w.add) -- 1
print(rawget(w, "add")) -- 1
赋值语句进入_newindex,访问语句不进入__newindex。
结合上面这两句话就很容易理解下面这个例子了:
Window = {x = 0, y = 0, width = 100, height = 100}
mt = {}
mt.__index = function(table, key)
print("going here __index")
return Window[key]
end
mt.__newindex = function(table, key, value)
print("going here __newindex")
rawset(table, key, value)
end
w = {x = 10, y = 20}
setmetatable(w, mt)
s = w.width -- going here __index
w.width = 1 -- going here __newindex
print(w.width) -- 1
print(rawget(w, "width")) -- 1
倒数第三条语句w.width = 1不会进入__index,所以会导致给w表添加新的域width。也就是说__index逻辑不会影响__newindex的判断,虽然__index可以访问到域width,但__newindex依然仍未w没有width域。
这些概念非常的绕,而且Lua是一种弱类型化语言,所以对于很多概念的具体行为一定要自己多加测试,不能够想当然。
Lua 元表(Metatable)
在 Lua table 中我们可以访问对应的key来得到value值,但是却无法对两个 table 进行操作。
因此 Lua 提供了元表(Metatable),允许我们改变table的行为,每个行为关联了对应的元方法。
例如,使用元表我们可以定义Lua如何计算两个table的相加操作a+b。
当Lua试图对两个表进行相加时,先检查两者之一是否有元表,之后检查是否有一个叫"__add"的字段,若找到,则调用对应的值。"__add"等即时字段,其对应的值(往往是一个函数或是table)就是"元方法"。
有两个很重要的函数来处理元表:
setmetatable(table,metatable): 对指定 table 设置元表(metatable),如果元表(metatable)中存在 __metatable 键值,setmetatable 会失败。
getmetatable(table): 返回对象的元表(metatable)。
以下实例演示了如何对指定的表设置元表:
mytable = {} -- 普通表
mymetatable = {} -- 元表
setmetatable(mytable,mymetatable) -- 把 mymetatable 设为 mytable 的元表
以上代码也可以直接写成一行:
mytable = setmetatable({},{})
以下为返回对象元表:
getmetatable(mytable) -- 这回返回mymetatable
__index 元方法
这是 metatable 最常用的键。
当你通过键来访问 table 的时候,如果这个键没有值,那么Lua就会寻找该table的metatable(假定有metatable)中的__index 键。如果__index包含一个表格,Lua会在表格中查找相应的键。
我们可以在使用 lua 命令进入交互模式查看:
$ lua
Lua 5.3.0 Copyright (C) 1994-2015 Lua.org, PUC-Rio
> other = { foo = 3 }
> t = setmetatable({}, { __index = other })
> t.foo
3
> t.bar
nil
如果__index包含一个函数的话,Lua就会调用那个函数,table和键会作为参数传递给函数。
__index 元方法查看表中元素是否存在,如果不存在,返回结果为 nil;如果存在则由 __index 返回结果。
mytable = setmetatable({key1 = "value1"}, {
__index = function(mytable, key)
if key == "key2" then
return "metatablevalue"
else
return nil
end
end
})
print(mytable.key1,mytable.key2)
实例输出结果为:
value1 metatablevalue
实例解析:
mytable 表赋值为 {key1 = "value1"}。
mytable 设置了元表,元方法为 __index。
在mytable表中查找 key1,如果找到,返回该元素,找不到则继续。
在mytable表中查找 key2,如果找到,返回 metatablevalue,找不到则继续。
判断元表有没有__index方法,如果__index方法是一个函数,则调用该函数。
元方法中查看是否传入 "key2" 键的参数(mytable.key2已设置),如果传入 "key2" 参数返回 "metatablevalue",否则返回 mytable 对应的键值。
我们可以将以上代码简单写成:
mytable = setmetatable({key1 = "value1"}, { __index = { key2 = "metatablevalue" } })
print(mytable.key1,mytable.key2)
总结
Lua 查找一个表元素时的规则,其实就是如下 3 个步骤:
1.在表中查找,如果找到,返回该元素,找不到则继续
2.判断该表是否有元表,如果没有元表,返回 nil,有元表则继续。
3.判断元表有没有 __index 方法,如果 __index 方法为 nil,则返回 nil;如果 __index 方法是一个表,则重复 1、2、3;如果 __index 方法是一个函数,则返回该函数的返回值。
该部分内容来自作者寰子:https://blog.csdn.net/xocoder/article/details/9028347
__newindex 元方法
__newindex 元方法用来对表更新,__index则用来对表访问 。
当你给表的一个缺少的索引赋值,解释器就会查找__newindex 元方法:如果存在则调用这个函数而不进行赋值操作。
以下实例演示了 __newindex 元方法的应用:
mymetatable = {}
mytable = setmetatable({key1 = "value1"}, { __newindex = mymetatable })
print(mytable.key1)
mytable.newkey = "新值2"
print(mytable.newkey,mymetatable.newkey)
mytable.key1 = "新值1"
print(mytable.key1,mymetatable.key1)
以上实例执行输出结果为:
value1
nil 新值2
新值1 nil
以上实例中表设置了元方法 __newindex,在对新索引键(newkey)赋值时(mytable.newkey = "新值2"),会调用元方法,而不进行赋值。而如果对已存在的索引键(key1),则会进行赋值,而不调用元方法 __newindex。
以下实例使用了 rawset 函数来更新表:
mytable = setmetatable({key1 = "value1"}, {
__newindex = function(mytable, key, value)
rawset(mytable, key, "\""..value.."\"")
end
})
mytable.key1 = "new value"
mytable.key2 = 4
print(mytable.key1,mytable.key2)
以上实例执行输出结果为:
new value "4"
为表添加操作符
以下实例演示了两表相加操作:
-- 计算表中最大值,table.maxn在Lua5.2以上版本中已无法使用
-- 自定义计算表中最大键值函数 table_maxn,即计算表的元素个数
function table_maxn(t)
local mn = 0
for k, v in pairs(t) do
if mn < k then
mn = k
end
end
return mn
end
-- 两表相加操作
mytable = setmetatable({ 1, 2, 3 }, {
__add = function(mytable, newtable)
for i = 1, table_maxn(newtable) do
table.insert(mytable, table_maxn(mytable)+1,newtable[i])
end
return mytable
end
})
secondtable = {4,5,6}
mytable = mytable + secondtable
for k,v in ipairs(mytable) do
print(k,v)
end
以上实例执行输出结果为:
1 1
2 2
3 3
4 4
5 5
6 6
__add 键包含在元表中,并进行相加操作。 表中对应的操作列表如下:(注意:__是两个下划线)
模式 描述
__add 对应的运算符 '+'.
__sub 对应的运算符 '-'.
__mul 对应的运算符 '*'.
__div 对应的运算符 '/'.
__mod 对应的运算符 '%'.
__unm 对应的运算符 '-'.
__concat 对应的运算符 '..'.
__eq 对应的运算符 '=='.
__lt 对应的运算符 '<'.
__le 对应的运算符 '<='.
__call 元方法
__call 元方法在 Lua 调用一个值时调用。以下实例演示了计算表中元素的和:
-- 计算表中最大值,table.maxn在Lua5.2以上版本中已无法使用
-- 自定义计算表中最大键值函数 table_maxn,即计算表的元素个数
function table_maxn(t)
local mn = 0
for k, v in pairs(t) do
if mn < k then
mn = k
end
end
return mn
end
-- 定义元方法__call
mytable = setmetatable({10}, {
__call = function(mytable, newtable)
sum = 0
for i = 1, table_maxn(mytable) do
sum = sum + mytable[i]
end
for i = 1, table_maxn(newtable) do
sum = sum + newtable[i]
end
return sum
end
})
newtable = {10,20,30}
print(mytable(newtable))
以上实例执行输出结果为:
70
__tostring 元方法
__tostring 元方法用于修改表的输出行为。以下实例我们自定义了表的输出内容:
mytable = setmetatable({ 10, 20, 30 }, {
__tostring = function(mytable)
sum = 0
for k, v in pairs(mytable) do
sum = sum + v
end
return "表所有元素的和为 " .. sum
end
})
print(mytable)
以上实例执行输出结果为:
表所有元素的和为 60