TensorFlow两种方式计算Cross Entropy
sparse_softmax_cross_entropy_with_logits与softmax_cross_entropy_with_logits
import tensorflow as tf y=tf.constant([[0.1,0.8,0.2]]) y_=tf.constant([[0,1,0]]) cross_entropy1 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1)) cross_entropy2 = tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_) with tf.Session() as sess: tf.global_variables_initializer().run() print(sess.run(cross_entropy1)) print(sess.run(cross_entropy2))
[ 0.71559191]
[ 0.71559191]
可以看出,softmax_cross_entropy_with_logits第二个参数传入的参数是原数组,而sparse_softmax_cross_entropy_with_logits传入的是原数组中为1的索引位置。