python调参神器hyperopt
一、安装
pip install hyperopt
二、说明
Hyperopt提供了一个优化接口,这个接口接受一个评估函数和参数空间,能计算出参数空间内的一个点的损失函数值。用户还要指定空间内参数的分布情况。
Hyheropt四个重要的因素:指定需要最小化的函数,搜索的空间,采样的数据集(trails database)(可选),搜索的算法(可选)。
首先,定义一个目标函数,接受一个变量,计算后返回一个函数的损失值,比如要最小化函数q(x,y) = x**2 + y**2
指定搜索的算法,算法也就是hyperopt的fmin函数的algo参数的取值。当前支持的算法由随机搜索(对应是hyperopt.rand.suggest),模拟退火(对应是hyperopt.anneal.suggest),TPE算法。
关于参数空间的设置,比如优化函数q,输入fmin(q,space=hp.uniform(‘a’,0,1)).hp.uniform函数的第一个参数是标签,每个超参数在参数空间内必须具有独一无二的标签。hp.uniform指定了参数的分布。其他的参数分布比如
hp.choice返回一个选项,选项可以是list或者tuple.options可以是嵌套的表达式,用于组成条件参数。
hp.pchoice(label,p_options)以一定的概率返回一个p_options的一个选项。这个选项使得函数在搜索过程中对每个选项的可能性不均匀。
hp.uniform(label,low,high)参数在low和high之间均匀分布。
hp.quniform(label,low,high,q),参数的取值是round(uniform(low,high)/q)*q,适用于那些离散的取值。
hp.loguniform(label,low,high)绘制exp(uniform(low,high)),变量的取值范围是[exp(low),exp(high)]
hp.randint(label,upper) 返回一个在[0,upper)前闭后开的区间内的随机整数。
搜索空间可以含有list和dictionary.
from hyperopt import hp
list_space = [
hp.uniform(’a’, 0, 1),
hp.loguniform(’b’, 0, 1)]
tuple_space = (
hp.uniform(’a’, 0, 1),
hp.loguniform(’b’, 0, 1))
dict_space = {
’a’: hp.uniform(’a’, 0, 1),
’b’: hp.loguniform(’b’, 0, 1)}
三、简单例子
from hyperopt import hp,fmin, rand, tpe, space_eval def q (args) : x, y = args return x**2-2*x+1 + y**2 space = [hp.randint('x', 5), hp.randint('y', 5)] best = fmin(q,space,algo=rand.suggest,max_evals=10) print(best)
输出:
{'x': 2, 'y': 0}
四、xgboost举例
xgboost具有很多的参数,把xgboost的代码写成一个函数,然后传入fmin中进行参数优化,将交叉验证的auc作为优化目标。auc越大越好,由于fmin是求最小值,因此求-auc的最小值。所用的数据集是202列的数据集,第一列样本id,最后一列是label,中间200列是属性。
#coding:utf-8 import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler import xgboost as xgb from random import shuffle from xgboost.sklearn import XGBClassifier from sklearn.cross_validation import cross_val_score import pickle import time from hyperopt import fmin, tpe, hp,space_eval,rand,Trials,partial,STATUS_OK def loadFile(fileName = "E://zalei//browsetop200Pca.csv"): data = pd.read_csv(fileName,header=None) data = data.values return data data = loadFile() label = data[:,-1] attrs = data[:,:-1] labels = label.reshape((1,-1)) label = labels.tolist()[0] minmaxscaler = MinMaxScaler() attrs = minmaxscaler.fit_transform(attrs) index = range(0,len(label)) shuffle(index) trainIndex = index[:int(len(label)*0.7)] print len(trainIndex) testIndex = index[int(len(label)*0.7):] print len(testIndex) attr_train = attrs[trainIndex,:] print attr_train.shape attr_test = attrs[testIndex,:] print attr_test.shape label_train = labels[:,trainIndex].tolist()[0] print len(label_train) label_test = labels[:,testIndex].tolist()[0] print len(label_test) print np.mat(label_train).reshape((-1,1)).shape def GBM(argsDict): max_depth = argsDict["max_depth"] + 5 n_estimators = argsDict['n_estimators'] * 5 + 50 learning_rate = argsDict["learning_rate"] * 0.02 + 0.05 subsample = argsDict["subsample"] * 0.1 + 0.7 min_child_weight = argsDict["min_child_weight"]+1 print "max_depth:" + str(max_depth) print "n_estimator:" + str(n_estimators) print "learning_rate:" + str(learning_rate) print "subsample:" + str(subsample) print "min_child_weight:" + str(min_child_weight) global attr_train,label_train gbm = xgb.XGBClassifier(nthread=4, #进程数 max_depth=max_depth, #最大深度 n_estimators=n_estimators, #树的数量 learning_rate=learning_rate, #学习率 subsample=subsample, #采样数 min_child_weight=min_child_weight, #孩子数 max_delta_step = 10, #10步不降则停止 objective="binary:logistic") metric = cross_val_score(gbm,attr_train,label_train,cv=5,scoring="roc_auc").mean() print metric return -metric space = {"max_depth":hp.randint("max_depth",15), "n_estimators":hp.randint("n_estimators",10), #[0,1,2,3,4,5] -> [50,] "learning_rate":hp.randint("learning_rate",6), #[0,1,2,3,4,5] -> 0.05,0.06 "subsample":hp.randint("subsample",4),#[0,1,2,3] -> [0.7,0.8,0.9,1.0] "min_child_weight":hp.randint("min_child_weight",5), # } algo = partial(tpe.suggest,n_startup_jobs=1) best = fmin(GBM,space,algo=algo,max_evals=4)#max_evals表示想要训练的最大模型数量,越大越容易找到最优解 print best print GBM(best)
详细参考:http://blog.csdn.net/qq_34139222/article/details/60322995