flink1.13.3 watermark + window入门
1.1 pom文件
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<flink.version>1.13.3</flink.version>
<hadoop.version>2.9.2</hadoop.version>
<scala.binary.version>2.11</scala.binary.version>
<scala.version>2.11.12</scala.version>
<slf4j.version>1.7.30</slf4j.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-hadoop-compatibility_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
1.2 代码实现
package com.lew.timedemo;
import org.apache.flink.api.common.eventtime.*;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import java.util.Iterator;
/**
* @Author gcwel
* @Description
* @Date 2021/11/2
*/
public class Demo1 {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//设置自动水印发射的间隔
env.getConfig().setAutoWatermarkInterval(1000L);
env.setParallelism(1);
DataStreamSource<String> sourceDs = env.socketTextStream("gcw1", 10086);
SingleOutputStreamOperator<Tuple2<String, Long>> mapDs = sourceDs.map(new MapFunction<String, Tuple2<String, Long>>() {
@Override
public Tuple2<String, Long> map(String value) throws Exception {
String[] split = value.split(",");
return Tuple2.of(split[0], Long.valueOf(split[1]));
}
});
//周期性 发射watermark
SingleOutputStreamOperator<Tuple2<String, Long>> watermarks = mapDs.assignTimestampsAndWatermarks(new WatermarkStrategy<Tuple2<String, Long>>() {
@Override
public WatermarkGenerator<Tuple2<String, Long>> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
return new WatermarkGenerator<Tuple2<String, Long>>() {
private long maxTimeStamp = 0L;
private long maxOutOfOrderness = 3000L; //允许的最大延迟时间
@Override
public void onEvent(Tuple2<String, Long> event, long eventTimestamp, WatermarkOutput output) {
//每次来一条数据就会触发一次
maxTimeStamp = Math.max(maxTimeStamp, event.f1);
}
@Override
public void onPeriodicEmit(WatermarkOutput output) {
//周期性 发射watermark
output.emitWatermark(new Watermark(maxTimeStamp - maxOutOfOrderness));
}
};
}
}.withTimestampAssigner(((element, recordTimestamp) -> element.f1)));
watermarks.keyBy(x -> x.f0).window(TumblingEventTimeWindows.of(Time.seconds(4)))
.apply(new WindowFunction<Tuple2<String, Long>, String, String, TimeWindow>() {
@Override
public void apply(String s, TimeWindow window, Iterable<Tuple2<String, Long>> input, Collector<String> out) throws Exception {
Iterator<Tuple2<String, Long>> iterator = input.iterator();
int count = 0;
while (iterator.hasNext()) {
count++;
iterator.next();
}
out.collect(window.getStart() + "->" + window.getEnd() + " " + s + ":" + count);
}
}).print();
env.execute();
}
}
1.3 理解
此例子中设置了
-
env.getConfig().setAutoWatermarkInterval(1000L);
每隔一秒去自动emitWatermark, -
TumblingEventTimeWindows.of(Time.seconds(4))
滚动窗口为4s -
private long maxOutOfOrderness = 3000L;
允许的最大延迟时间3s
测试数据
01,1635867066000
01,1635867067000
01,1635867068000
01,1635867069000
01,1635867070000
01,1635867071000
当最后一条数据01,1635867071000
处理时,会触发窗口[1635867064000, 1635867068000)且不再接收此阶段数据(可以自定义处理)
滚动窗口将每一分钟每隔四秒分隔,前闭后开
例如2021-11-02 23:31
分划分成
[2021-11-02 23:31:00 , 2021-11-02 23:31:04)
[2021-11-02 23:31:04 , 2021-11-02 23:31:08)
....
[2021-11-02 23:31:56 , 2021-11-02 23:32:00)
[1635867064000, 1635867068000) 对应 [2021-11-02 23:31:04, 2021-11-02 23:31:08);
而最大延迟时间为3s,所以触发[1635867064000, 1635867068000)
此窗口的时间戳要>= 1635867071000
即1635867068000 + 3000 = 1635867067100
1.4 代码编写出现问题
//最初写成Long.MIN_VALUE 导致new Watermark(maxTimeStamp - maxOutOfOrderness)
//超出范围出错,出错不报错很难排查
//private long maxTimeStamp =Long.MIN_VALUE;
//排出后改为
private long maxTimeStamp = 0L;