Codeforces Round #736 (Div. 2)

A,B,C就不说了,又被D题卡住了.....
感觉怎么说呢,就是题解中的三个提示都已经想到了,就是不知道该怎么解决....

D. Integers Have Friends

简述题意:题目要求你找一个区间\([l,r]\)使得\(a_l\)%m=\(a_{l+1}\)%m=...=\(a_r\)%m。且m>=2,要求能找到的最大区间是多少。
看到取模我的想法就是将其最原本的式子写\(a_l\)=c1m+k,\(a_{l+1}\)=c2m+k,...,\(a_r\)=cn*m+k,考虑他们之间的关系,发现有个相同的余数k,我们做个差分数组,这样他们的k就都抵消了..于是我们惊奇的发现m是他们差分数组的gcd,这样后我们就知道一个区间合法当且仅当这个区间的差分数组的gcd>=2,这样的话我们直接在原数组上做差分。长度变为n-1,题目转化成,我们需要找到一个区间,使得他们的gcd>=2,且长度最大。.....
昨天到这就gg了....找区间的话,无外乎就是固定左端点最最远的右端点,尺取法等操作,考虑尺取法的话确实发现右端点是单调递增的,但左端点移动时我们无法去除左端点的影响,这个方法暂时告歇...接着考虑我们学过的一些数据结构,gcd符合区间加法的原则(广义上的区间加法,即知道了左区间的gcd,右区间的gcd,我们就可以计算出整个区间的gcd了)。这样的话我们就可以用各种结构进行优化试试,首先我们右端点是朴素的从左向右扫的,倍增能不能呢?好像可以,只需要预处理一下就可以了。线段树作为区间之王,行不行?貌似也可以,比如说给定一个l,我们先进入l这个叶子节点,等回溯时,一点点尝试将区间往上叠加,先将右区间全部叠加上看行不行,不行的话再向下搜寻就大概可以了(我码一下试试.).

倍增+ST表
 
     //不等,不问,不犹豫,不回头.
#include
#define _ 0
#define ls p<<1
#define db double
#define rs p<<1|1
#define RE register
#define P 1000000007
#define ll long long
#define INF 1000000000
#define get(x) x=read()
#define PLI pair
#define PII pair
#define ull unsigned long long
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(x,y,z) for(RE int x=y;x<=z;++x)
#define fep(x,y,z) for(RE int x=y;x>=z;--x)
#define go(x) for(RE int i=link[x],y=a[i].y;i;y=a[i=a[i].next].y)
using namespace std;
const int N=2e5+10;
int n; 
ll a[N],b[N],f[N][22];//f[i][j]表示从第i个数开始,一共2^j个数的gcd的值. 

inline ll read()
{
ll x=0,ff=1;
char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') ff=-1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*ff;
}

inline ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}

int main()
{
// freopen("1.in","r",stdin);
int get(T);
while(T--)
{
get(n);
rep(i,1,n) get(a[i]);
rep(i,1,n-1) b[i]=abs(a[i+1]-a[i]); //注意这里用绝对值,防止出现负数.
rep(i,1,n-1) f[i][0]=b[i];
rep(j,1,20)
rep(i,1,n-1)
{
if(i+(1<<j)-1>n-1) break;
f[i][j]=gcd(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
ll ans=1;
rep(i,1,n-1)//从i为起点开始向后找.
{
ll gcc=f[i][0],now=i+1;
if(gcc<2) continue;
fep(j,20,0)
{
if(now+(1<<j)-1>n-1) continue;
if(gcd(gcc,f[now][j])>=2)
{
gcc=gcd(gcc,f[now][j]);
now=now+(1<<j);
}
}
ans=max(ans,now-i+1);
}
put(ans);
}
return (0_0);
}
//以吾之血,铸吾最后的亡魂.

线段树由于有巨大的常数,就T掉了,不过打出来还是比较考验码力的...
线段树上二分
 
    //不等,不问,不犹豫,不回头.
#include
#define _ 0
#define ls p<<1
#define db double
#define rs p<<1|1
#define RE register
#define P 1000000007
#define ll long long
#define INF 1000000000
#define get(x) x=read()
#define PLI pair
#define PII pair
#define ull unsigned long long
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(x,y,z) for(RE int x=y;x<=z;++x)
#define fep(x,y,z) for(RE int x=y;x>=z;--x)
#define go(x) for(RE int i=link[x],y=a[i].y;i;y=a[i=a[i].next].y)
using namespace std;
const int N=2e5+10;
int n; 
ll a[N],b[N];
struct Tree
{
    int l,r;
    ll dat;//存一个区间所有值得gcd. 
    #define l(p) t[p].l
    #define r(p) t[p].r
    #define d(p) t[p].dat
}t[N<<2];

inline ll read()
{
ll x=0,ff=1;
char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') ff=-1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*ff;
}

inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}

inline void build(int p,int l,int r)
{
l(p)=l;r(p)=r;
if(l==r) {d(p)=b[l];return;}
int mid=l+r>>1;
build(ls,l,mid);
build(rs,mid+1,r);
d(p)=gcd(d(ls),d(rs));
}

inline int ask(int p,int k,ll &v)
{
if(v0)
{
if(l(p)
r(p))
{
v=d(p);
return l(p);
}
int mid=l(p)+r(p)>>1,id=0;
if(k<=mid) id=ask(ls,k,v);
else id=ask(rs,k,v);
if(idr(ls))
{
if(gcd(v,d(rs))>=2)
{
v=gcd(v,d(rs));
return r(rs);
}
else return ask(rs,k,v);
}
else return id;
}
else
{
if(gcd(v,d(p))>=2)
{
v=gcd(v,d(p));
return r(p);
}
else if(l(p)
r(p)) return l(p)-1;
else if(gcd(v,d(ls))<2) return ask(ls,k,v);
else
{
v=gcd(v,d(ls));
return ask(rs,k,v);
}
}
}

int main()
{
// freopen("1.in","r",stdin);
int get(T);
while(T--)
{
get(n);
rep(i,1,n) get(a[i]);
rep(i,1,n-1) b[i]=abs(a[i+1]-a[i]);
if(n-1>=1) build(1,1,n-1);
ll ans=1;
rep(i,1,n-1)//枚举每一个左端点。
{
if(b[i]<2) continue;
ll v=0;
ll p=ask(1,i,v);
ans=max(ans,p-i+2);
}
putl(ans);
}
return 0;
}
//以吾之血,铸吾最后的亡魂.

E. The Three Little PigsE. The Three Little Pigs

我脑子有坑...还是读错题了,...每次袭击都一定会袭击x个...我以为每个方案都要袭击若干次...
既然如此那就好办了,我们可以枚举大灰狼在哪一分钟袭击了,然后在这一分钟选出x个就行了,具体来说对于一个询问x而言答案为\(\sum_{i=0}^{n} C_{3*i}^x\)
可这里有q个询问...怎么搞....一般来说,遇到这种数学式子的问题且是组合数,我们需要找到递推式来快速找到答案。因为组合数的种种优美性质,求多个组合数的和时总是能找到递推预处理,然后O(1)的输出答案。一般的我们可以考虑我们已经知道了当前数x的答案,我们思考怎么根据已有的数据快速得到x+1的答案,具体的我们令\(f(x,j)表示\sum_{i=1}^{n} C_{3*i+j}^{x}\),显然\(f(x,0)\)就是每个x的答案,由于\(C_{3*i+j}^{x}=C_{3*i+j-1}^{x}+C_{3*i+j-1}^{x-1}\)
所以有\(f(x,1)=f(x,0)+f(x-1,0)\)
\(f(x,2)=f(x,1)+f(x-1,1)\)
通过简单的容斥(一点都不简单...)发现\(f(x,0)+f(x,1)+f(x,2)=\sum_{i=1}^{n}C_{3*i+0}^{x}+\sum_{i=1}^{n}C_{3*i+1}^{x}+\sum_{i=1}^{n}C_{3*i+2}^{x}=\sum_{i=1}^{n}(C_{3*i+0}^{x}+C_{3*i+1}^{x}+C_{3*i+2}^{x})=\sum_{i=3}^{3*n+2} C_{i}^{x}\)
到这里就停止了吗?不,路还在前方,我们把式子展开一下试试:\(C_x^x+C_{x+1}^x+C_{x+2}^x+...+C_{3*n+2}^x\)我们可以发现\(C_x^x+C_{x+1}^x=C_{x+1}^{x+1}+C_{x+1}^x=C_{x+2}^{x+1}\)哇,这样可以一直合并下去啊!最后的结果呢,就是\(C_{3*n+3}^{x+1}\)
经过一番努力我们得到了\(f(x,0)+f(x,1)+f(x,2)=C_{3*n+3}^{x+1}\)
结合之上的两条\(f(x,1)=f(x,0)+f(x-1,0)\)
\(f(x,2)=f(x,1)+f(x-1,1)\)
我们找出递推式:\(f(x,0)=\frac{C_{3n+3}^{x+1}-f(x-1,1)-2*f(x-1,0)}{3}\)
\(f(x,1)=f(x,0)+f(x-1,0)\)
\(f(x,2)=f(x,1)+f(x-1,1)\)
初值\(f(0,0)=f(0,1)=f(0,2)=n+1\)
目标为\(ans(x)=f(x,0)\)经过离线就可以O(n)解决问题了。
最后来个总结:题目要求\(\sum_{i=0}^{n} C_{3*i}^{x}\)的值,我们肯定不能直接求,显然要利用组合数的一些公式进行化简,但观察组合数的x是不变的,变化的是3*i,我们一方面可以想到他们都是相差3的,我们可以将其中的1,2补齐变成连续的,一方面可以思考组合数的化简公式\(C_n^m=C_{n-1}^{m-1}+C_{n-1}^m\)可以发现下面的n都要变成n-1,这就提示我们要设出\(f(x,j)\)\(\sum C_{3*i+j}^x\)这样的话我们就可以找到关系了。至于初值为什么要赋成n+1,i=0确实要考虑。

查看代码
 
  //不等,不问,不犹豫,不回头.
#include
#define _ 0
#define ls p<<1
#define db double
#define rs p<<1|1
#define ll long long
#define INF 1000000000
#define get(x) x=read()
#define PLI pair
#define PII pair
#define ull unsigned long long
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(x,y,z) for(int x=y;x<=z;++x)
#define fep(x,y,z) for(int x=y;x>=z;--x)
#define go(x) for(RE int i=link[x],y=a[i].y;i;y=a[i=a[i].next].y)
using namespace std;
const int N=1e6+10,P=1e9+7;
int n,m;
ll jc[3*N],inv_jc[3*N],f[N*3][3];

inline int read()
{
int x=0,ff=1;
char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') ff=-1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*ff;
}

inline ll power(ll a,int b)
{
ll ans=1;
while(b)
{
if(b&1) ans=ansa%P;
b>>=1;
a=a
a%P;
}
return ans%P;
}

inline void prework()
{
jc[0]=1;inv_jc[0]=1;
int t=3n+3;
rep(i,1,t) jc[i]=jc[i-1]
i%P;
inv_jc[t]=power(jc[t],P-2);
fep(i,t-1,1) inv_jc[i]=inv_jc[i+1]*(i+1)%P;
}

inline ll C(int n,int m)
{
if(m>n) return 0;
return jc[n]inv_jc[m]%Pinv_jc[n-m]%P;
}

int main()
{
//freopen("1.in","r",stdin);
get(n);get(m);prework();
f[0][0]=f[0][1]=f[0][2]=n+1;
ll inp=power(3,P-2);
rep(i,1,3n)
{
f[i][0]=((C(3
n+3,i+1)-f[i-1][1]-2f[i-1][0])%P+P)%Pinp%P;
f[i][1]=(f[i][0]+f[i-1][0])%P;
f[i][2]=(f[i][1]+f[i-1][1])%P;
}
rep(i,1,m)
{
int get(x);
putl(f[x][0]);
}
return (0_0);
}
//以吾之血,铸吾最后的亡魂.

PS:此题卡常,请将常数尽可能的减小,当处理1-n的阶乘及逆元时,可以先将n的阶乘的逆元求出来,之后就可以O(n)的预处理逆元了。
posted @ 2021-08-07 18:37  逆天峰  阅读(46)  评论(0编辑  收藏  举报
作者:逆天峰
出处:https://www.cnblogs.com/gcfer//