P4430 小猴打架

P4430 小猴打架

题目意思就是让你求,在网格图中(任意两点都有边)的生成树的个数(边的顺序不同也算不同的方案).

首先我们考虑一个生成树,由于一定有n-1条边,单单考虑添加边的顺序,根据乘法原理,第一条边有n-1个选择.

第二条边有n-2条选择,直至最后一条半只剩一个选择,所以只考虑边的顺序有!(n-1)中方案

之后考虑树的形态.

好的博客

这个博客告诉我们一个无根树的形态有n^n-2中方案,由于prufer的编码对应唯一的一棵树的形态.

显然,一棵有 n 个结点的无根树,它的 pruferprufer 编码是唯一的,且有n2 个可能相同的元素。

所以所有的方案数就是n^n-2.最后算上每一棵树的边的顺序答案ans=!(n-1)*n^(n-2).

同理如果有根树的形态就是n^(n-1)。原因就是在无根树确定以后n个节点都可以是根.

posted @ 2020-03-20 21:14  逆天峰  阅读(103)  评论(0编辑  收藏  举报
作者:逆天峰
出处:https://www.cnblogs.com/gcfer//