【codeforces】Codeforces Round #277 (Div. 2) 解读
门户:Codeforces Round #277 (Div. 2)
裸公式= =
#include <cstdio> #include <cstring> #include <algorithm> using namespace std ; typedef long long LL ; LL n ; int main () { while ( ~scanf ( "%I64d" , &n ) ) printf ( "%I64d\n" , n / 2 - ( n % 2 ?n : 0 ) ) ; return 0 ; }
486B. OR in Matrix
依据题意,将a矩阵必须为0的地方先填充为0,其它地方置为1,然后对b矩阵中为1的bij推断第i行或第j列是否有1,没有输出NO,推断到最后假设全部的bij都是合法的,则输出YES。
#include <map> #include <vector> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std ; typedef long long LL ; #define rep( i , a , b ) for ( int i = ( a ) ; i < ( b ) ; ++ i ) #define For( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i ) #define rev( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i ) #define clr( a , x ) memset ( a , x , sizeof a ) #define mid ( ( l + r ) >> 1 ) int a[105][105] ; int b[105][105] ; int R[105] , C[105] ; int n , m ; void solve () { clr ( R , 0 ) ; clr ( C , 0 ) ; For ( i , 1 , n ) For ( j , 1 , m ) a[i][j] = 1 ; For ( i , 1 , n ) For ( j , 1 , m ) { scanf ( "%d" , &b[i][j] ) ; if ( !b[i][j] ) { For ( k , 1 , m ) a[i][k] = 0 ; For ( k , 1 , n ) a[k][j] = 0 ; } } For ( i , 1 , n ) For ( j , 1 , m ) { R[i] += a[i][j] ; C[j] += a[i][j] ; } For ( i , 1 , n ) For ( j , 1 , m ) if ( b[i][j] ) { if ( a[i][j] ) continue ; if ( R[i] || C[j] ) continue ; printf ( "NO\n" ) ; return ; } printf ( "YES\n" ) ; For ( i , 1 , n ) For ( j , 1 , m ) printf ( "%d%c" , a[i][j] , j < m ?' ' : '\n' ) ; } int main () { while ( ~scanf ( "%d%d" , &n , &m ) ) solve () ; return 0 ; }
486C. Palindrome Transformation
贪心,其实仅仅用在初始位置所在的字符串半边处理便足够了,于是考虑几种情况,判一下就可以。这题错的吐血了。少打两个else,导致绝杀失败,不然30多名好歹好看一点。
。
#include <map> #include <vector> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std ; typedef long long LL ; #define rep( i , a , b ) for ( int i = ( a ) ; i < ( b ) ; ++ i ) #define For( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i ) #define rev( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i ) #define clr( a , x ) memset ( a , x , sizeof a ) #define mid ( ( l + r ) >> 1 ) const int MAXN = 100005 ; char s[MAXN] ; int a[MAXN] ; int n , p ; void solve () { int ans = 0 ; clr ( a , 0 ) ; scanf ( "%s" , s + 1 ) ; int l = n + 1 , r = 1 ; For ( i , 1 , n / 2 ) { if ( s[i] != s[n - i + 1] ) { a[i] = abs ( s[i] - s[n - i + 1] ) ; a[n - i + 1] = a[i] = min ( a[i] , 26 - a[i] ) ; ans += a[i] ; } } if ( p <= n / 2 ) { For ( i , 1 , n / 2 ) if ( a[i] ) l = min ( l , i ) , r = max ( r , i ) ; } else { For ( i , n / 2 + 1 , n ) if ( a[i] ) l = min ( l , i ) , r = max ( r , i ) ; } if ( l != n + 1 ) { if ( p <= l ) ans += r - p ; else if ( p >= r ) ans += p - l ; else ans += min ( r - l + r - p , r - l + p - l ) ; } printf ( "%d\n" , ans ) ; } int main () { while ( ~scanf ( "%d%d" , &n , &p ) ) solve () ; return 0 ; }
486D. Valid Sets
考虑以每一个点作为根结点扩展出一棵树,这个树满足树上全部的节点的权值都不比树根大且val[root]-val[v]<=d。然后能够树型DP求以这个点为树根的集合数。考虑到假设以u为根时扩展的树中包括了与u权值同样的v,那么以v为根时便不能包括u了,这个我们能够用一个数组判重。
详细见代码。
#include <map> #include <vector> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std ; typedef long long LL ; #define rep( i , a , b ) for ( int i = ( a ) ; i < ( b ) ; ++ i ) #define For( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i ) #define rev( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i ) #define clr( a , x ) memset ( a , x , sizeof a ) #define mid ( ( l + r ) >> 1 ) const int MAXN = 2005 ; const int MAXE = 4005 ; const int mod = 1e9 + 7 ; struct Edge { int v , n ; Edge () {} Edge ( int v , int n ) : v ( v ) , n ( n ) {} } ; Edge E[MAXE] ; int H[MAXN] , cntE ; int val[MAXN] ; int vis[MAXN][MAXN] ; LL dp[MAXN] ; int d , n ; int root ; void clear () { cntE = 0 ; clr ( H , -1 ) ; clr ( vis , 0 ) ; } void addedge ( int u , int v ) { E[cntE] = Edge ( v , H[u] ) ; H[u] = cntE ++ ; } LL dfs ( int u , int fa ) { dp[u] = 1 ; LL ans = 1 ; for ( int i = H[u] ; ~i ; i = E[i].n ) { int v = E[i].v ; if ( v == fa ) continue ; if ( val[v] > val[root] || vis[root][v] || val[root] - val[v] > d ) continue ; if ( val[root] == val[v] ) vis[root][v] = vis[v][root] = 1 ; LL tmp = dfs ( v , u ) ; ans = ( ans + tmp * dp[u] % mod ) % mod ; dp[u] = ( dp[u] + tmp * dp[u] ) % mod ; } return ans ; } void solve () { int u , v ; clear () ; For ( i , 1 , n ) scanf ( "%d" , &val[i] ) ; rep ( i , 1 , n ) { scanf ( "%d%d" , &u , &v ) ; addedge ( u , v ) ; addedge ( v , u ) ; } LL ans = 0 ; For ( i , 1 , n ) { root = i ; ans = ( ans + dfs ( i , 0 ) ) % mod ; } printf ( "%I64d\n" , ans ) ; } int main () { while ( ~scanf ( "%d%d" , &d , &n ) ) solve () ; return 0 ; }
设F1[i]为1~i内以i结尾的LIS。F2[i]为i~n内以i开头的LIS。ans为1~n内的LIS。
1.F1[i]+F2[i]-1<ans。
2.F1[i]+F2[i]-1==ans时长度F1[i]不唯一。
3.F1[i]+F2[i]-1==ans时长度F1[i]唯一。
可用二分求F1[i],F2[i]。
#include <map> #include <vector> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std ; typedef long long LL ; #define rep( i , a , b ) for ( int i = ( a ) ; i < ( b ) ; ++ i ) #define For( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i ) #define rev( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i ) #define clr( a , x ) memset ( a , x , sizeof a ) #define mid ( ( l + r ) >> 1 ) const int MAXN = 100005 ; int vis[MAXN] ; int S[MAXN] , top ; int a[MAXN] ; int F1[MAXN] ; int F2[MAXN] ; int n ; int search1 ( int x , int l , int r ) { while ( l < r ) { int m = mid ; if ( S[m] >= x ) r = m ; else l = m + 1 ; } return l ; } int search2 ( int x , int l , int r ) { while ( l < r ) { int m = mid ; if ( S[m] <= x ) r = m ; else l = m + 1 ; } return l ; } void solve () { clr ( vis , 0 ) ; For ( i , 1 , n ) scanf ( "%d" , &a[i] ) ; top = 0 ; For ( i , 1 , n ) { if ( !top || a[i] > S[top] ) { S[++ top] = a[i] ; F1[i] = top ; } else { int x = search1 ( a[i] , 1 , top ) ; S[x] = a[i] ; F1[i] = x ; } } top = 0 ; rev ( i , n , 1 ) { if ( !top || a[i] < S[top] ) { S[++ top] = a[i] ; F2[i] = top ; } else { int x = search2 ( a[i] , 1 , top ) ; S[x] = a[i] ; F2[i] = x ; } } int ans = top ; For ( i , 1 , n ) if ( F1[i] + F2[i] - 1 == ans ) ++ vis[F1[i]] ; For ( i , 1 , n ) { if ( F1[i] + F2[i] - 1 < ans ) putchar ( '1' ) ; else if ( vis[F1[i]] == 1 ) putchar ( '3' ) ; else putchar ( '2' ) ; } printf ( "\n" ) ; } int main () { while ( ~scanf ( "%d" , &n ) ) solve () ; return 0 ; }
版权声明:本文博客原创文章,博客,未经同意,不得转载。