<Machine Learning in Action >之二 朴素贝叶斯 C#实现文章分类

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = ones(numWords); p1Num = ones(numWords)      #change to ones() 
    p0Denom = 2.0; p1Denom = 2.0                        #change to 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = log(p1Num/p1Denom)          #change to log()
    p0Vect = log(p0Num/p0Denom)          #change to log()
    return p0Vect,p1Vect,pAbusive

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)    #element-wise mult   *提示一
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else: 
        return 0
    


*提示一

p(Ci|w)=p(w|Ci)p(Ci)/p(w)  对乘积取自然对数  ln(p(w|Ci)p(Ci))=ln(p(w|Ci))+ln(p(Ci))

在以下样例中。由于每一个分类在样本中的比例都一样的,这样不用再加上log(p(Ci))也不会影响最后的分类效果


用C#随便做个样例,实现文章类型的分类   随机词不如有针对性的词来的有效,所以这里都是从全部三个分类里找到的词汇

1、创建词向量:中超/亚冠/国足/足协/英超/西甲/欧冠/意甲/德甲/篮球/NBA/CBA/高尔夫/乒乓/排球/网球/羽毛球/跑步/赛车/棋牌/台球/游泳/马术/拳击/田径/功夫/扑克/体育/球队/球员/训练/国家队/联赛/俱乐部/场地/翻盘/绝杀/热身/队友/冠军/亚军/季军/犯规/赛季/加时/反超/半场/争夺/战术/阵容/比赛/德比/恢复/进球/失球/奥斯卡/娱乐/影迷/电影/电视/音乐/戏剧/视频/演员/导演/明星/经纪人/歌手/连续剧/展映/粉丝/写真/演技/作秀/节目/艺人/超模/女星/模特/男星/性感/主创/院线/影业/拍摄/编剧/情节/影像/剧情/主演/上映/票房/开机/剧集/表演/收视/预告片/主持人/艾美奖/角色/剧院/乐迷/影迷/演出/专辑/乐坛/剧场/文艺/芭蕾/戏曲/舞蹈/军事/军队/军机/炸弹/军方/坦克/军舰/炸死/军演/战备/部队/军区/国防/士兵/舰船/潜艇/飞机/直升机/舰队/保卫/演习/武器/反击/打击/阅兵/对抗/防卫/海军/空军/陆军/武装/战略/空袭/冲突/装甲/步兵/作战/导弹/边防/侦察/战斗机/雷达/轰炸/防御/据点/火力/航空母舰/进攻/弹药/军营/包围/攻占/俘虏/參战/战友/战斗/入侵


2、搜狐上下载三类文章各10篇组成训练样本,计算出每篇文章的文档矩阵。标注每篇文章的类别标签          

样本文件名称格式:  编号_类别标签.txt

文档矩阵:

000000000000000000100000000000000000001100010001001010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000010000000000000100000000000000011110001010000000000000000011000000110000000000100000000000000000010000000000000000000000000000000000000000000000
000000000000000000000000000011000000000000000000000001001000001001000000001000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000001001000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000010000000000000000000000000000010010000100000000000000010010000001000000000100000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000010000000010000010000010100000000111111111110000000100000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000110000000000000011010000001000010000000000001100001110000000000000000000000000000000000000000000000000000000000000000000000000000
000000000100000000000000000000000000000000000000000000001010000110000000000000000100000001101000000100000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000010000010000000000000001000000001100000100000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000001010000110000000000000000000001011000010000110000000000000000000000000000000000000000000000000000000000000000000
000000010000000000000000000011100000001000010110001001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000000000
000000000000000000000000000000000000000000000000000000001001000100000000000000000000000010000100000100000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011110000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000110000000111111111111100000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001100000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000000100000000000000000000000000000000000
000000000000000000000000000000000000000000000001000000000001000000000000000000000000100000000000000000000000000100100000010010000000000000000100000000000100000000000010
000000000000000000000000000000100000000000000000000000000001000000000000000000000000000000000000000000000000000100010000010000000000000000000100000100000000000000000000
000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000110010000000001001010000000010000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000010100000000000100000000010000000000000001000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000010000000000100000000100010000000000001000000000
000000010000000000000000000111001100000000010000001001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000000000100000000000000100000000110000010000000000000
110000000000000000000000000100001000100000010000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000
110000000000000000000000000111001100100100010001111011000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000
000000000001000000000000000001000000101000100110001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000
000000000000010000000000000000000000001101000001001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000010000000000000000010000000000000010010001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000001000000000000000111100000101000110100001000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000
000000000000000000000000000100000000000110010100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000


类别标签向量:

122222222212333333333131111111

using System;
using System.Text;
using System.Windows.Forms;
using System.IO;

namespace NaiveBayes
{
    public partial class Form1 : Form
    {
        private string[] vocabArray;
        private double[] p0Num, p1Num, p2Num;

        public Form1()
        {
            InitializeComponent();
            label2.Text = "体育1、娱乐2、军事3\r\n每一个类型10个训练样本\r\n文章所有出自搜狐新闻\r\n词向量从各类文章中分词获得";
            StreamReader sr = new StreamReader("vocabList.txt", Encoding.Default);
            string line, all = "";
            while ((line = sr.ReadLine()) != null)
            {
                all += line;
            }
            vocabArray = all.Split(new string[] { "/" }, StringSplitOptions.RemoveEmptyEntries);
        }

        private void Form1_Resize(object sender, EventArgs e)
        {
            this.Width = 800;
            this.Height = 600;
        }

        private void button1_Click(object sender, EventArgs e)
        {
            //生成文档矩阵和分类标签向量
            DirectoryInfo di = new DirectoryInfo("train");
            FileInfo[] fi = di.GetFiles("*.txt");
            string[] trainMatrix = new string[fi.Length];
            p0Num = new double[vocabArray.Length];
            p1Num = new double[vocabArray.Length];
            p2Num = new double[vocabArray.Length];
            double p0Denom = 2.0;
            double p1Denom = 2.0;
            double p2Denom = 2.0;
            for (int i = 0; i < vocabArray.Length; i++)
            {
                p0Num[i] = p1Num[i] = p2Num[i] = 1.0;
            }
            string trainCategory = "";
            int m = 0;
            foreach (FileInfo i in fi)
            {
                StreamReader sr = new StreamReader(i.FullName, Encoding.Default);
                string line, all = "";
                while ((line = sr.ReadLine()) != null)
                {
                    all += line;
                }
                string strVec = "";
                foreach (string j in vocabArray)
                {
                    if (all.Contains(j))
                        strVec += "1";
                    else
                        strVec += "0";
                }
                trainMatrix[m] = strVec;
                m++;
                trainCategory += i.Name.Substring(i.Name.LastIndexOf("_") + 1, 1);
            }
            StreamWriter sw = new StreamWriter(".\\trainV\\trainMatrix.txt", true);
            foreach (string i in trainMatrix)
            {
                sw.WriteLine(i);
                sw.Flush();
            }
            sw.Close();
            sw = new StreamWriter(".\\trainV\\trainCategory.txt", true);
            sw.WriteLine(trainCategory);
            sw.Close();
            for (int i = 0; i < trainMatrix.Length; i++)
            {
                if (trainCategory.Substring(i, 1) == "1")
                {
                    double tmp = 0;
                    for (int j = 0; j < vocabArray.Length; j++)
                    {
                        p0Num[j] += double.Parse(trainMatrix[i].Substring(j, 1));
                        tmp += double.Parse(trainMatrix[i].Substring(j, 1));
                    }
                    p0Denom += tmp;
                }
                else if (trainCategory.Substring(i, 1) == "2")
                {
                    double tmp = 0;
                    for (int j = 0; j < vocabArray.Length; j++)
                    {
                        p1Num[j] += double.Parse(trainMatrix[i].Substring(j, 1));
                        tmp += double.Parse(trainMatrix[i].Substring(j, 1));
                    }
                    p1Denom += tmp;
                }
                else if (trainCategory.Substring(i, 1) == "3")
                {
                    double tmp = 0;
                    for (int j = 0; j < vocabArray.Length; j++)
                    {
                        p2Num[j] += double.Parse(trainMatrix[i].Substring(j, 1));
                        tmp += double.Parse(trainMatrix[i].Substring(j, 1));
                    }
                    p2Denom += tmp;
                }
                else
                {
                    //Undo
                }
            }
            for (int j = 0; j < vocabArray.Length; j++)
            {
                p0Num[j] = Math.Log(p0Num[j] / p0Denom);
                p1Num[j] = Math.Log(p1Num[j] / p1Denom);
                p2Num[j] = Math.Log(p2Num[j] / p2Denom);
            }
            label4.Text = "处理样本数据完毕";
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (textBox1.Text.Trim() != "")
            {
                string strVec = "";
                foreach (string i in vocabArray)
                {
                    if (textBox1.Text.Contains(i))
                        strVec += "1";
                    else
                        strVec += "0";
                }
                double p0 = 0;
                double p1 = 0;
                double p2 = 0;
                for (int j = 0; j < vocabArray.Length; j++)
                {
                    p0 += p0Num[j] * double.Parse(strVec.Substring(j, 1));
                    p1 += p1Num[j] * double.Parse(strVec.Substring(j, 1));
                    p2 += p2Num[j] * double.Parse(strVec.Substring(j, 1));
                }
                string catelog = "";
                if (p0 > p1 && p0 > p2)
                    catelog = "体育";
                else if (p1 > p0 && p1 > p2)
                    catelog = "娱乐";
                else if (p2 > p0 && p2 > p1)
                    catelog = "军事";
                else
                    catelog = "无法推断";
                label3.Text = "体育:" + p0.ToString() + "\r\n娱乐:" + p1.ToString() + "\r\n军事:" + p2.ToString();
                label1.Text = "所属类型是:" + catelog;
            }
        }
    }
}


posted @ 2017-06-03 21:12  gccbuaa  阅读(222)  评论(0编辑  收藏  举报