HDU1018 Big Number n!的位数

Big Number

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 31053 Accepted Submission(s): 14398


Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.

Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.

Output
The output contains the number of digits in the factorial of the integers appearing in the input.

Sample Input
2 10 20

Sample Output
7 19
一个整数n的位数:log10(n)+1
此题答案为:log10(n!)+1.
log(n!)=log(n)+log(n-1)+log(n-2).....+log(1)
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;

int main()
{
    int i,j,n,T,res;
    double t;
    scanf("%d",&T);
    while(T--){
        scanf("%d",&n);
        t=0;
        for(i=1;i<=n;i++)
            t+=log10(i);
        res=(int)t+1;
        printf("%d\n",res);
    }
    return 0;
}


posted @   gccbuaa  阅读(170)  评论(0编辑  收藏  举报
编辑推荐:
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· 用 C# 插值字符串处理器写一个 sscanf
· Java 中堆内存和栈内存上的数据分布和特点
· 开发中对象命名的一点思考
· .NET Core内存结构体系(Windows环境)底层原理浅谈
阅读排行:
· 本地部署DeepSeek后,没有好看的交互界面怎么行!
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· 趁着过年的时候手搓了一个低代码框架
· 推荐一个DeepSeek 大模型的免费 API 项目!兼容OpenAI接口!
· 用 C# 插值字符串处理器写一个 sscanf
点击右上角即可分享
微信分享提示