CF 558B(Amr and The Large Array-计数)

B. Amr and The Large Array
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Amr has got a large array of size n. Amr doesn't like large arrays so he intends to make it smaller.

Amr doesn't care about anything in the array except the beauty of it. The beauty of the array is defined to be the maximum number of times that some number occurs in this array. He wants to choose the smallest subsegment of this array such that the beauty of it will be the same as the original array.

Help Amr by choosing the smallest subsegment possible.

Input

The first line contains one number n (1 ≤ n ≤ 105), the size of the array.

The second line contains n integers ai (1 ≤ ai ≤ 106), representing elements of the array.

Output

Output two integers l, r (1 ≤ l ≤ r ≤ n), the beginning and the end of the subsegment chosen respectively.

If there are several possible answers you may output any of them.

Sample test(s)
input
5
1 1 2 2 1
output
1 5
input
5
1 2 2 3 1
output
2 3
input
6
1 2 2 1 1 2
output
1 5
Note

A subsegment B of an array A from l to r is an array of size r - l + 1 where Bi = Al + i - 1 for all 1 ≤ i ≤ r - l + 1


对每一个可能值计数


#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (2000000+10)
#define N (1000000)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int l[MAXN],r[MAXN],t[MAXN],n;
int main()
{
//	freopen("B.in","r",stdin);
//	freopen(".out","w",stdout);
	
	For(i,N) l[i]=INF,r[i]=-INF,t[i]=0;
	
	cin>>n;
	For(i,n)
	{
		int p;scanf("%d",&p);
		l[p]=min(l[p],i);
		r[p]=max(r[p],i);
		t[p]++;
	}
	
	int ma=0,ans=INF,j=0;
	For(i,N) ma=max(ma,t[i]);
	For(i,N)
		if (ma==t[i]&&ans>r[i]-l[i]+1)
		{
			 ans=r[i]-l[i]+1;j=i;
		}
	cout<<l[j]<<' '<<r[j]<<endl;
	
	return 0;
}





posted @ 2017-05-05 09:46  gccbuaa  阅读(185)  评论(0编辑  收藏  举报