二进制数转换成十进制数的计算方法
二进制数的值转换成十进制数的值,只需将二进制数的各数位的值和位权相乘,然后将相乘的结果相加即可
计算中用到的属性:基数、位数、位权
注:基数的0次幂都为1
基数:2进制的基数为2
位数:数的位数减1
位权:基数的位数次幂
======================================计算方法====================================
二进制转换十进制:从右向左计算,(第1位数值×位权)+(第2位数值×位权)+(第3位数值×位权)+(第4位数值×位权)+(第5位数值×位权)+(第6位数值×位权)+(第7位数值×位权)+(第8位数值×位权)
例如:二进制数00100111转换成十进制数
基数:2
位数:(各个数位减1)
第1位数:1减1 位数:0
第2位数:2减1 位权:1
第3位数:3减1 位权:2
第4位数:4减1 位权:3
第5位数:5减1 位权:4
第6位数:6减1 位权:5
第7位数:7减1 位权:6
第8位数:8减1 位权:7
位权(基数位数)
第1位数:2的0次幂(基数的0次幂都为1) 位权:1
第2位数:2的1次幂(2) 位权:2
第3位数:2的2次幂(2×2) 位权:4
第4位数:2的3次幂(2×2×2) 位权:8
第5位数:2的4次幂(2×2×2×2) 位权:16
第6位数:2的5次幂(2×2×2×2×2) 位权:32
第7位数:2的6次幂(2×2×2×2×2×2) 位权:64
第8位数:2的7次幂(2×2×2×2×2×2×2) 位权:128
得出的十进制结果:(1)+(1×2)+(1×2×2)+(0×2×2×2)+(0×2×2×2×2)+(1×2×2×2×2×2)+(0×2×2×2×2×2×2)+(0×2×2×2×2×2×2×2)
数值 位数 基数 位权
第1位 1 1-1=0 2 20=1 1×1=1
第2位 1 2-1=1 2 21=2 1×2=2
第3位 1 3-1=2 2 22=4 1×4=4
第4位 0 4-1=3 2 23=8 0×8=0
第5位 0 5-1=4 2 24=16 0×16=0
第6位 1 6-1=5 2 25=32 1×32=32
第7位 0 7-1=6 2 26=64 0×64=0
第8位 0 8-1=7 2 27=128 0×128=0