linux中的MSI中断。。其实真相是个悲剧
前边说到想用MSI,因为MSI能够提供多样化的中断信息,也就是说一个中断号,却能传递多种信息。这样美好的特性当然是大家所向往的。
可惜,上周看MSI用法的时候,“最终知道真相的我眼泪掉下来”。。T T,真相就是目前linux的内核不支持这种多重MSI(Mutiple MSI)!也就是说MSI使用起来在效果上和传统的irq没区别,都是只能处理一种中断。
看看代码里怎么说。在msi-HOWTO.txt里提到了,要使用msi机制,需要先调用pci_enable_msi接口。这个接口在pci.h中定义
#define pci_enable_msi(pdev) pci_enable_msi_block(pdev, 1)
这里看到,实际上它调用了pci_enable_msi_block接口。同样在msi-HOWTO中也提到了这个函数,有如下说明:
int pci_enable_msi_block(struct pci_dev *dev, int count)
This variation on the above call allows a device driver to request multiple
MSIs. The MSI specification only allows interrupts to be allocated in
powers of two, up to a maximum of 2^5 (32).
这里提到了,这个函数其实是用来申请mutiple MSIs的。当时看到这里的时候,我真心想,我的病有救了啊!于是继续深入,位于msi.c中:
/**
* pci_enable_msi_block - configure device's MSI capability structure
* @dev: device to configure
* @nvec: number of interrupts to configure
*
* Allocate IRQs for a device with the MSI capability.
* This function returns a negative errno if an error occurs. If it
* is unable to allocate the number of interrupts requested, it returns
* the number of interrupts it might be able to allocate. If it successfully
* allocates at least the number of interrupts requested, it returns 0 and
* updates the @dev's irq member to the lowest new interrupt number; the
* other interrupt numbers allocated to this device are consecutive.
*/
int pci_enable_msi_block(struct pci_dev *dev, unsigned int nvec)
{
int status, pos, maxvec;
u16 msgctl;
pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
if (!pos)
return -EINVAL;
pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
maxvec = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1);
if (nvec > maxvec)
return maxvec;
status = pci_msi_check_device(dev, nvec, PCI_CAP_ID_MSI);
if (status)
return status;
WARN_ON(!!dev->msi_enabled);
/* Check whether driver already requested MSI-X irqs */
if (dev->msix_enabled) {
dev_info(&dev->dev, "can't enable MSI "
"(MSI-X already enabled)\n");
return -EINVAL;
}
status = msi_capability_init(dev, nvec);
return status;
}
互略前边设备检查的部分,重点就在于 status = msi_capability_init(dev, nvec);这一句。
这个函数做了什么呢。。
static int msi_capability_init(struct pci_dev *dev, int nvec)
{
struct msi_desc *entry;
int pos, ret;
u16 control;
unsigned mask;
pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
msi_set_enable(dev, pos, 0); /* Disable MSI during set up */
pci_read_config_word(dev, msi_control_reg(pos), &control);
/* MSI Entry Initialization */
entry = alloc_msi_entry(dev);
if (!entry)
return -ENOMEM;
entry->msi_attrib.is_msix = 0;
entry->msi_attrib.is_64 = is_64bit_address(control);
entry->msi_attrib.entry_nr = 0;
entry->msi_attrib.maskbit = is_mask_bit_support(control);
entry->msi_attrib.default_irq = dev->irq; /* Save IOAPIC IRQ */
entry->msi_attrib.pos = pos;
entry->mask_pos = msi_mask_reg(pos, entry->msi_attrib.is_64);
/* All MSIs are unmasked by default, Mask them all */
if (entry->msi_attrib.maskbit)
pci_read_config_dword(dev, entry->mask_pos, &entry->masked);
mask = msi_capable_mask(control);
msi_mask_irq(entry, mask, mask);
list_add_tail(&entry->list, &dev->msi_list);
/* Configure MSI capability structure */
ret = arch_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
if (ret) {
msi_mask_irq(entry, mask, ~mask);
free_msi_irqs(dev);
return ret;
}
/* Set MSI enabled bits */
pci_intx_for_msi(dev, 0);
msi_set_enable(dev, pos, 1);
dev->msi_enabled = 1;
dev->irq = entry->irq;
return 0;
}
可以看到,主要还是先分配和初始化了一些数据结构,并添加到内核维护的链表上。
狗血的高潮在于 ret = arch_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
字面来看这个函数应该是根据特定architecture建立起msi中断,应该已经接近这番探索的终点了。而事实上也确实是这样。。
代码如下:
#ifndef arch_setup_msi_irqs
int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
{
struct msi_desc *entry;
int ret;
/*
* If an architecture wants to support multiple MSI, it needs to
* override arch_setup_msi_irqs()
*/
if (type == PCI_CAP_ID_MSI && nvec > 1)
return 1;
list_for_each_entry(entry, &dev->msi_list, list) {
ret = arch_setup_msi_irq(dev, entry);
if (ret < 0)
return ret;
if (ret > 0)
return -ENOSPC;
}
return 0;
}
#endif
posted on 2011-03-05 11:10 gary_chen 阅读(7416) 评论(1) 编辑 收藏 举报