索引

Index

Note: Page numbers followed by f indicate figures, t indicate tables and b indicate boxes.

A

A* algorithm 199–201, 200f, 202–205b
Absolute sensors 207
Ackermann steering mechanism 24–26, 25f
Active markers 241, 251
Adaptive and Generic Accelerated Segment Test (AGAST) 277
Aerial mobile systems 4
Artificial markers 269–270, 276, 276f, 277f
Autonomous guided vehicles (AGVs) 
transportation vehicles 
control 392
decision making 392
localization and mapping 390–391
path planning 392
sensors 389–390
wheeled mobile system 
in agriculture 393–398
in domestic environments 403–410
in industry 399–403
in walking rehabilitation therapy 410–416
Autonomous mobile systems 
aerial mobile systems 4
applications 6–7
commands 5
future aspects 7
ground mobile systems 4
history of 7–9
mechanical and electronic parts 6
properties 6
water and underwater mobile systems 4

B

Ball motion 454, 455f
Bayesian filter 
environment sensing 320–325
localization 
in environment 332–337
principle 318–320
Markov chains 304, 304f, 305f
motion, in environment 326–332
state estimation 297–299b, 304–318, 306b
Bayesian theorem 312
Bayes’ rule 295–296b, 295–299
Behavior-based agent operation 458–459
Belief 313–314, 430, 432f
Bicycle drive kinematics 20–23, 21f
Binary images 268–269, 269f, 271–273
Breadth-first search algorithm 193–194, 193f
Bridge test 185–186, 186f
Brockett’s condition 91–92
Bug0 algorithm 187, 187f, 190–191b
Bug1 algorithm 188–189, 188f
Bug2 algorithm 189–192, 189f

C

Cascade control schemas 61–62
Cathetus 75
Chow’s theorem 44
Closed list 192–193
Closed-loop transfer function 63–65
Collision detection methods 180–181
Color sensor calibration 443–444
Conditional probability 291, 295–296b, 313–314
Configuration space 163–164
Continuous random variable 290–295, 292f, 293t
Control algorithm 
for differentially driven robot 85–87b, 87f
for differential type robot 73–74b, 74f, 76–78b, 77f, 78f
phases 72, 76
reference pose 
intermediate direction 75–78, 75f
intermediate point 72–74, 72f
to reference path control 83–87, 84f
on segmented continuous path, by line and circle arc 78–83, 79f
for tricycle robot 68–69b, 69f
Control error 63
Controllability 44–47
Controller gains 102–103
Coordinate frame transformations 
orientation and rotation 208–217
projective geometry 221–230
rotating frames 219–221
translation and rotation 217–218
Cost-to-goal 199
Covariance matrix 259–260, 347–348, 375

D

Dead reckoning 17–18, 231–239
inertial navigation system 232–239
odometry 231–232
Decomposing control 
feedback action 91–94
feedforward 91–94
Decomposition to cells 
accurate decomposition 167–168, 167f
approximate decomposition 168–172, 168f, 169f
Delaunay triangulation 176, 176b, 177f
Depth-first search algorithm 194, 195f
Differential drive kinematics 15–20, 16f
parallel parking maneuver 37–38b, 38f
reachable velocities and motion constraints 36b
Differentially driven wheeled mobile robot 
PDC control of 125
Takagi-Sugeno fuzzy error model of 122–124
Dijkstra’s algorithm 195–198, 198f
Directed graph 166, 166f
Direction cosine matrix (DCM) 208–209, 211–212, 220–221
Direct kinematics 14, 17–18
Discrete probability distribution 291, 292f
Discrete random variable 290–291, 292f, 293, 293t
Distribution 
definition 35
involutive 36
Dynamic constraints 32–33
Dynamic environment 161–162
Dynamic models 13, 56b

E

Environment sensing 320–325
Epipolar constraint 224–225
Essential matrix 224–225
Estimate convergence and bias 300–301
Euclidean distance 188, 188f, 189
Euler angles 209–210
Euler integration method 421–423
Extended Kalman filter (EKF) 351–374
External kinematic model 232
Exteroception (EC) 285t, 287
Exteroceptive sensors 286

F

Feedback action 91–94
Feedback control part 61
Feedback linearization 94–99, 97f
control law 94, 96
differentially driven vehicle 97–99b, 99f
flat outputs 94
for reference tracking 96, 97f
reference trajectory 95–96
state-space representation 95–96
translational velocity 95–96
Feedforward 91–94
Feedforward control part 61, 79
Flat outputs 92–93
Forward-motion control 
control algorithm 68–69b, 68
reference point 67
translational velocity 66–67
Four-state error model 117–122
Frequency spectrum 300
Frobenious theorem 39
Fundamental matrix 224–225
Future reference error 127–128

G

Gaussian function 293–294
Gaussian noise 351
Global navigation satellite system (GNSS) 389, 390f, 392, 396, 396f, 433
GNSS signal receiver 389, 390f, 391
Goalie motion control 457–458, 457f
Graph-based path planning methods 
A* algorithm 199–201, 200f
breadth-first search algorithm 193–194, 193f
depth-first search algorithm 194, 195f
Dijkstra’s algorithm 195–198, 198f
greedy best-first search algorithm 201–205, 202f
iterative deepening depth-first search 194–195, 196f
Greedy best-first search algorithm 201–205, 202f
Ground mobile systems 4

H

Heading measurement systems 239–240
Hidden Markov process 304, 304f, 305f
Histogram filter 375
Holonomic constraints 32–34
Hough transform 265–268, 267f
Hue-saturation-lightness (HSL) 270–271
Hue-saturation-value (HSV) 270–271, 271f

I

Image-based visual servoing (IBVS) 465–466
Image features, camera 268–282
Inertial navigation system (INS) 232–239
motion sensors 232–233
pose error 233
rotation sensors 232–233
self-contained technique 232–233
signal-to-noise ratio 233
unit angular rate 233–234
Information filter 375
Informed algorithms 193
Infrared light sensor 420–421
line-following and crossroad-detection 421, 422f
Instantaneous center of rotation (ICR) 14
Internal camera model 222–223
Internal kinematic model 13–14, 231–232
Inverse kinematics 14, 17–20
Iterative deepening depth-first search 194–195, 196f

J

Jacobian matrix 352–353, 436–439
Joint probability 290

K

Kalman-Bucy filter 375
Kalman filter 234–235, 337–375, 339–340b
algorithm 343, 343b
continuous variable, probability distribution of 338f
correction covariance matrix 348
correction step 338, 343–344
derivatives 374–375
extended 351–374
Gaussian function 338
Gaussian noise 346
for linear system 346–347
in matrix form 345–351
prediction step of 342–344
state estimation 337
updated state variance 341–342
Kalman observability matrix 303
Kinematic constraints 32–33
Kinematic model 13
Ackermann steering principle 24–26, 25f
bicycle drive 20–23, 21f
differential drive 15–20, 16f
direct kinematics 14, 17–18
external kinematics 14
instantaneous center of rotation (ICR) 14
internal kinematics 13–14
inverse kinematics 14, 17–20
motion constraints 14
omnidirectional drive 27–31
synchronous drive 26–27, 26f
tracked drive 31–32
tricycle drive 23, 23f
tricycle with a trailer 23–24, 24f
Kinematic trajectory-tracking error model 100–101, 100f

L

Laser range finder (LRF) 254–255
Laser range scanner (LIDAR) 389–390, 390f
Least squares method 254
Lie brackets 36
Lie derivative operator 302–303
Linear controller 101–105, 103–105b, 104f
Linear formation, vehicle control 
laser range finder (LRF) 447–448
localization, using odometry 448–449
reference trajectory estimation 449–451, 450f
vehicle path 447–448, 448f
virtual train formation 447
Linear matrix inequality (LMI) 122
Line-extraction algorithms 254
Line following algorithm 420–421, 422f
Localization 332
algorithm 318–319
Bayesian filter 
line following 420–421, 422f
map building 423–426, 424f, 425f, 425t
odometry 421–423, 424f
in environment 332–337
extended Kalman filter (EKF) 
correction step 438–439
global navigation satellite system (GNSS) 433
prediction step 435–438
particle-filter-based 
colored tiles 440–447
color sensor calibration 443–444, 444f
evolution of 445, 445f
manual control 442
ultrasonic distance sensors 467–471, 467f
wheel odometry 442–443
Local weak observability 302–303
Locomotion 13
Lyapunov-based control design 105–122
four-state error model 117–122
periodic control law design 112–117
stability 
control design in 106–112
Lyapunov functions 106, 113
Lyapunov stability 106
control design in 106–112

M

Machine vision algorithms 279–280
Manhattan distance 199–200
Manual control 442
Map building method 423–426, 424f, 425f, 425t
Maps 282–283
Markov chains 304, 304f, 305f
Maximally Stable Extremal Regions (MSER) 277–278
Memory usage 168–169
Mobile 2–3
Mobile robot 
color sensor, mounting of 440–441, 441f
image-based control of 
image-based visual servoing (IBVS) 465–466
natural image features 466
position-based visual servoing (PBVS) 463–465
path planning of 
A* path searching algorithm 472–475, 473f, 474f, 475f
distance transform, visualization of 479–480, 480f
optimum path, in map 475–481, 478f, 479f
Model-based predictive control (MPC) 125–132, 130–132b, 130f, 131f
Motion 
constraints 
controllability 44–47
dynamic constraints 32–33
holonomic constraints 32–34
integrability 35
kinematic constraints 32–33
lie bracket 35–44
nonholonomic constraints 32–35
vector fields and distribution 35–44
control 
attacker 453–455, 454f
straight accelerated kick 455–457, 456f
in environment 326–332
sensors 232–233
Motion models 
constraints 
controllability 44–47
dynamic constraints 32–33
holonomic constraints 32–34
integrability 35
kinematic constraints 32–33
Lie bracket 35–44
nonholonomic constraints 32–35
vector fields and distribution 35–44
dynamic models 13
dynamic motion model with constraints 
differential drive vehicle 51–58
Lagrange formulation 48
meaning of matrices 48, 49t
state-space representation 49–50
kinematic model 
Ackermann steering principle 24–26, 25f
bicycle drive 20–23, 21f
differential drive 15–20, 16f
direct kinematics 14, 17–18
external kinematics 14
instantaneous center of rotation (ICR) 14
internal kinematics 13–14
inverse kinematics 14, 17–20
motion constraints 14
omnidirectional drive 27–31
synchronous drive 26–27, 26f
tracked drive 31–32
tricycle drive 23, 23f
tricycle with a trailer 23–24, 24f
two-wheeled cart 13, 14f
Multiagent game strategy 459–460, 461f, 462f
Multiagent soccer robots 
attacker motion control 453–455, 454f, 455f
behavior-based agent operation 458–459
goalie motion control 457–458, 457f
multiagent game strategy 459–460, 461f, 462f
obstacle avoidance 458
setup 452, 453f
straight accelerated kick motion control 455–457, 456f
Multiview geometry 224–228

N

Natural local image features 269–270
Nodes 
direct path shapes 425–426, 425f, 427f, 429f
ending 423–425, 425t
paths in 423–425, 425t
start 194, 197
Noise linearization 352
Noise modeling 439
Nondeterministic events, in mobile systems 
Bayesian filter 
environment sensing 320–325
localization, in environment 332–337
localization principle 318–320
Markov chains 304, 304f, 305f
motion, in environment 326–332
state estimation 304–318
Kalman filter 
derivatives 374–375
extended 351–374
in matrix form 345–351
particle filter 375–386, 378f
probability 
Bayes’ rule 295–299
continuous random variable 291–295, 292f, 293t
discrete random variable 290–291, 292f, 293t
state estimation 
disturbances and noise 299–300
estimate convergence and bias 300–301
observability 301–303
Nonholonomic constraints 32–35, 61, 63, 92–93
Noninformed algorithms 193
Nonlinear tracking error model 123–124
Normal distribution 293–294, 294f

O

Objective function 132–133
Observability 301–303
analysis 358, 359f, 368f
rank condition 302–303
Obstacle avoidance 458
Occupancy grid 168
drifting 443
Omnidirectional drive 
four-wheel Mecanum drive 28–30
Mecanum wheel or Swedish wheel 27–28, 27f
three-wheel Mecanum drive 30–31, 31f
Open list 192
Optimal velocity profile estimation 148–157, 152–155b
friction force 148–149
radial acceleration 148–150
reference path 148
reference trajectory 151
tangential acceleration 148–150
velocity profile 148
Orientation and rotation 
Euler angles 209–210
quaternions 210–217
Orientation control 63–66
for Ackermann drive 65–66
for differential drive 63–65
Orientation error 65–66

P

Parallel distributed compensation (PDC) 122
Parallel projection 221
Parameterization 210
algorithm 376–377b, 376
Bayesian filter 375
in correction part 377, 378f
evolution of 445, 445f
Gaussian probability distribution 377
in prediction part 377
probability distribution 376
Particle measurement prediction 
from known robot motion 468
sensor model for 468–470, 469f
Particle swarm optimization-based control (PSO) 132–141, 134–137b, 137f, 138–141b, 242–243, 244f
model predictive control (MPC) 138–141
Path planning 
cells, decomposition to 166–172, 166f, 168f, 169f
configuration and configuration space 163–164, 164f
graph-based path planning methods 
A* algorithm 199–201, 200f
breadth-first search algorithm 193–194, 193f
depth-first search algorithm 194, 195f
Dijkstra’s algorithm 195–198, 198f
greedy best-first search algorithm 201–205, 202f
iterative deepening depth-first search 194–195, 196f
graph representation 166, 166f
obstacle shape and pose, in environment 164–165, 165f
potential field method 177–180, 178f
roadmap 
triangulation 176–177, 177f
visibility graph 172–173, 173f
Voronoi graph 173–176, 173f, 174f
robot environment 161–162, 162f
sampling-based path-planning 
probabilistic roadmap (PRM) 184–186, 184f, 185f
rapidly exploring random tree (RRT) 182f, 182–184, 183f
simple path planning algorithms 
Bug0 algorithm 187, 187f
Bug1 algorithm 188–189, 188f
Bug2 algorithm 189–192, 189f
Periodic control law design 112–117
Pinhole camera model 222–223, 222f
Pole placement approach 102–103
Pose error 233
Pose measurement methods 
active markers measurement 240–252
dead reckoning 231–239
environmental features, navigation using 253–282
global position measurement 240–252
heading measurement systems 239–240
maps 282–283
Position-based visual servoing (PBVS) 463–465
Posterior state probability distributions 324, 325f
Posture error 100–101, 100f
Potential field method 177–180, 178f, 179b
Probabilistic roadmap (PRM) 184–186, 184f, 185f, 186b
learning phase 184–185, 184f
path searching phase 184f, 185
Probability 
Bayes’ rule 295–299
continuous random variable 291–295, 292f, 293t
discrete random variable 290–291, 292f, 293t
Probability density function 291–292, 292f
Probability distribution 326–328b, 305
Projective geometry 221–230
3D reconstruction 228–230
internal camera model 222–223
multiview geometry 224–228
parallel projection 221
perspective projection 221
pinhole camera model 222–223, 222f
singular cases 228
Proportional controller 85
Proprioception (PC) 285t, 287
Proprioceptive sensors 286

Q

Quaternions 210–217, 219–220

R

Radio-controlled electrical boat 3, 3f
Random Sample Consensus (RANSAC) method 280–282
Rapidly exploring random tree (RRT) 182–184, 182f, 183b, 183f
Reference orientation 84–85
Reference pose, control to 
forward-motion control 66–70
intermediate direction, using an 75–78, 75f
intermediate point, using an 72–74, 72f
orientation control 
for Ackermann drive 65–66
for differential drive 63–65
reference path control 83–87, 84f
reference position 70–71
segmented continuous path, by line and circle arc 78–83, 79f
Reference trajectory 126
estimation 449–451, 450f
Relative sensors 207
RGB color model 270–271, 271f
Roadmap 
triangulation 176–177, 177f
visibility graph 172–173, 173f
Voronoi graph 173–176, 173f, 174f
Robot(s) 1–2
Robot environment 
configuration 163–164, 164f
configuration space 163–164, 164f
free space 161–162
obstacles 161–162, 162f
border-based description of 165, 165f
intersecting half-planes 165, 165f
path planning purposes 
cells, decomposition to 166–172, 167f, 168f
graph representation 166, 166f
potential field 177–180, 178f
roadmap 172–177, 173f, 174f
sampling-based path-planning 180–186, 181f
start and goal configurations 161–163, 162f
Robot kidnapping 447
Robot soccer test bed 452, 453f
Robot-tracking prediction-error vector 128
Rossum’s Universal Robots (R.U.R.) 1
Rotation matrix 
Matlab implementations 
rotX function 226–228b, 237
rotY function 226–228b, 237
rotZ function 237
orientation and rotation 208–217
translation and rotation 217–218
Rotation sensors 232–233

S

Sampling-based path-planning 
probabilistic roadmap (PRM) 184–186, 184f, 185f
rapidly exploring random tree (RRT) 182–184, 182f, 183f
Scale invariant feature transform (SIFT) 277
Self-contained technique 232–233
Sensors 289
absolute sensors 207
characteristics 284–286
classifications 286–287
coordinate frame transformations 
orientation and rotation 208–217
projection 221–230
rotating frames 219–221
translation and rotation 217–218
pose measurement methods 
active markers and global position measurement 240–252
dead reckoning 231–239
features 253–282
heading measurement systems 239–240
maps 282–283
relative sensors 207
Signal distribution 300
Signal-to-noise ratio (SNR) 233
Simple path planning algorithms 
Bug0 algorithm 187, 187f
Bug1 algorithm 188–189, 188f
Bug2 algorithm 189–192, 189f
Simultaneous localization and mapping (SLAM) 253
Smooth time-invariant feedback 91–92
Speeded-Up Robust Features (SURF) 277
Speedup algorithms 271–273
Split-and-merge algorithm 255–259, 256f
State error covariance matrix 437–438, 437f
State estimation 
Bayesian filter 
correction step 307, 313
general algorithm for 313–318, 314b
from observations and actions 311–318
prediction step 306–307, 313
disturbances and noise 299–300
estimate convergence and bias 300–301
observability 301–303
State probability 307–311b, 307
State transition graph 166
Static environment 161–162
Stochastic optimization 132–133
Straight accelerated kick motion control 455–457, 456f
Straight-line clustering algorithm 259–265, 262f
Straight-line features 254–268
Synchronous drive 26–27, 26f

T

Takagi-Sugeno fuzzy control design 122–125
3D reconstruction, stereo camera configuration 228–230
Total probability theorem 313
Tracked drive 31–32, 32f
Trajectory tracking control 
feedback action 91–94
feedback linearization 94–99, 97f
feedforward 91–94
kinematic trajectory-tracking error model 100–101
linear controller 101–105
Lyapunov-based control design 105–122
model-based predictive control (MPC) 125–132
particle swarm optimization-based control (PSO) 132–141
Takagi-Sugeno fuzzy control design 122–125
visual servoing (VS) approaches 142–147
Transfer function 63–65
Translational velocity, Cartesian components of 92–93
Translation and rotation 217–218
Trapezoidal numerical integration 232
Triangulation/trilateration approach 176–177, 177f, 241, 241f, 242
Tricycle drive kinematics 23, 23f
Tricycle robot 
control algorithm for 68–69b, 69f
wheels, rear-powered pair of 88–91b, 89f, 90f
Two-degree-of-freedom control 61, 91–92
2D Gaussian function 293–294
Two-line element set (TLE) 251

U

Unscented Kalman filter 374

V

Vector fields 35
Vehicle kinematic model 46–47
Velocity command 71
Visibility graph 172–173, 173f
Visual servoing (VS) approaches 142–147, 145–147b, 146f, 147f
camera retreat 142
control error 142
features 142
hybrid VS 142–143
image-based visual servoing (IBVS) 142–143
interaction matrix 143–144
Lyapunov function 144–145
position-based visual servoing (PBVS) 142–143
velocity controller 143–144
Voronoi graph 173–176, 173f, 174–176b, 174f, 175f
in Matlab 174–176b
roadmap 173, 173f
Voronoi curve 173, 174f

W

Water and underwater mobile systems 4
Weighted graph 166, 166f
Wheeled mobile system 
in agriculture 
control strategies 397–398
localization, mapping, and slam 397
planning routes and scheduling 398
service unit setup 394–397
in domestic environments 
control 408–409
decision making 409–410
localization and mapping 407
path planning 408
sensors 405–407
in industry 
control 402–403
decision making 403
localization and mapping 401–402
path planning 403
sensors 401
motion control of 
optimal velocity profile estimation 148–157
to reference pose 62–87
trajectory tracking control 88–147
in walking rehabilitation therapy 
control 414–415
localization and mapping 414
path planning 415–416
sensors 412–414
Wheel odometry 442–443
kinematic model of 436
Wheels 3–4, 4f
White noise 299–300

posted on 2018-12-25 00:23  gary_123  阅读(186)  评论(0编辑  收藏  举报

导航