二维数组 子数组和的最大值

黄冠和我(高晓林)的大作,应老师要求上传+.+ 讨论半天也没想出啥好点子,只得用穷举法了。

算法:

先写一个求矩阵子数组的和的函数quzd(),参数有四个 i.j.m.n。(i,j)代表矩阵左上角的坐标,(m,n) 代表矩阵右下角的坐标。然后定义x,y,

for(x=i;x<=m;x++),for(y=j;y<=n;y++),sum=sum+a[x][y];。便把和求出来了。然后再把每个矩阵子数组求出来,分别是i,j的for循环嵌套,然后再用一个函数求m,n(i<=m<=行数,j<=n<=列数)。 把求到的i,j,m,n ,调用之前写的函数。

#include <iostream>
using namespace std;
#define h 3
#define p 5
int quzd(int a[][p],int i,int j,int m,int n)
{
    int sum,k,l;
    sum=0;
    for(k=i;k<=m;k++)
    {
        for(l=j;l<=n;l++)
        {
            sum=sum+a[k][l];
        }
    }
    return  sum;
}
int zdsz(int a[][p],int i,int j)
{
    int m,n,max;
    int sum[h][p];
    for(m=0;m<h;m++)
    {
        for(n=0;n<p;n++)
        {
            sum[m][n]=0;
        }
    }
    for(m=i;m<h;m++)
    {
        for(n=j;n<p;n++)
        {
            sum[m][n]=quzd(a,i,j,m,n);
        }
    }
    max=a[i][j];
    for(m=i;m<h;m++)
    {
        for(n=j;n<p;n++)
        {
            if(max<sum[m][n])
            {
                max=sum[m][n];
            }
        }
    }
    return max;
}

int main()
{
    int i,j,max;
    int a[h][p]={
        -10,1 ,5 ,3 ,34,
        -3 ,25,-25,50,-34,
        -8,9 ,7 ,-31,-2
    };
    int b[h][p];
    for(i=0;i<h;i++)
    {
        for(j=0;j<p;j++)
        {
            b[i][j]=zdsz(a,i,j);
        }
    }
    max=b[0][0];
    for(i=0;i<h;i++)
    {
        for(j=0;j<p;j++)
        {
            if(max<b[i][j])
                max=b[i][j];
        }
    }
    cout<<max<<endl;
    return 0;
}

测试用例:

int a[3][5]={

10, 1,2 ,3 ,34,

1 ,-1,-3,-5,98,

-8,9 , 7,-2,2 };

最大:148

int a[h][p]={

10,1 ,2 ,3 ,34,

1 ,23,-3,-5,-34,

-8,9 ,7 ,-31,2 };

最大:50

int a[3][5]={

10,1 ,-50 ,3 ,34,

-3 ,25,25,50,-34,

-8,9 ,7 ,-31,-2 };

最大:100

int a[3][5]={

10,1 ,-50 ,3 ,34,

-3 ,25,-25,50,-34,

-8,9 ,7 ,-31,-2 };

最大:53

不会开辟动态的二维数组就在前面用了define,直接改行和列的值就行了...

posted @ 2014-03-19 19:51  高晓林  阅读(170)  评论(1编辑  收藏  举报