44 | 答疑文章(三):说一说这些好问题

这是我们专栏的最后一篇答疑文章,今天我们来说说一些好问题。

在我看来,能够帮我们扩展一个逻辑的边界的问题,就是好问题。因为通过解决这样的问题,能够加深我们对这个逻辑的理解,或者帮我们关联到另外一个知识点,进而可以帮助我们建立起自己的知识网络。

在工作中会问好问题,是一个很重要的能力。

经过这段时间的学习,从评论区的问题我可以感觉出来,紧跟课程学习的同学,对 SQL 语句执行性能的感觉越来越好了,提出的问题也越来越细致和精准了。

接下来,我们就一起看看同学们在评论区提到的这些好问题。在和你一起分析这些问题的时候,我会指出它们具体是在哪篇文章出现的。同时,在回答这些问题的过程中,我会假设你已经掌握了这篇文章涉及的知识。当然,如果你印象模糊了,也可以跳回文章再复习一次。

join 的写法

在第 35 篇文章《join 语句怎么优化?》中,我在介绍 join 执行顺序的时候,用的都是 straight_join。@郭健 同学在文后提出了两个问题:

  1. 如果用 left join 的话,左边的表一定是驱动表吗?
  2. 如果两个表的 join 包含多个条件的等值匹配,是都要写到 on 里面呢,还是只把一个条件写到 on 里面,其他条件写到 where 部分?

为了同时回答这两个问题,我来构造两个表 a 和 b:

 

 

 

create table a(f1 int, f2 int, index(f1))engine=innodb;
create table b(f1 int, f2 int)engine=innodb;
insert into a values(1,1),(2,2),(3,3),(4,4),(5,5),(6,6);
insert into b values(3,3),(4,4),(5,5),(6,6),(7,7),(8,8);
复制代码

 

表 a 和 b 都有两个字段 f1 和 f2,不同的是表 a 的字段 f1 上有索引。然后,我往两个表中都插入了 6 条记录,其中在表 a 和 b 中同时存在的数据有 4 行。

@郭健 同学提到的第二个问题,其实就是下面这两种写法的区别:

 

 

 

select * from a left join b on(a.f1=b.f1) and (a.f2=b.f2); /*Q1*/
select * from a left join b on(a.f1=b.f1) where (a.f2=b.f2);/*Q2*/
复制代码

 

我把这两条语句分别记为 Q1 和 Q2。

首先,需要说明的是,这两个 left join 语句的语义逻辑并不相同。我们先来看一下它们的执行结果。

                                                 图 1 两个 join 的查询结果

可以看到:

  • 语句 Q1 返回的数据集是 6 行,表 a 中即使没有满足匹配条件的记录,查询结果中也会返回一行,并将表 b 的各个字段值填成 NULL。
  • 语句 Q2 返回的是 4 行。从逻辑上可以这么理解,最后的两行,由于表 b 中没有匹配的字段,结果集里面 b.f2 的值是空,不满足 where 部分的条件判断,因此不能作为结果集的一部分。

接下来,我们看看实际执行这两条语句时,MySQL 是怎么做的。

我们先一起看看语句 Q1 的 explain 结果:

                                                图 2 Q1 的 explain 结果

可以看到,这个结果符合我们的预期:

  • 驱动表是表 a,被驱动表是表 b;
  • 由于表 b 的 f1 字段上没有索引,所以使用的是 Block Nexted Loop Join(简称 BNL) 算法。
看到 BNL 算法,你就应该知道这条语句的执行流程其实是这样的:
  1. 把表 a 的内容读入 join_buffer 中。因为是 select * ,所以字段 f1 和 f2 都被放入 join_buffer 了。
  2. 顺序扫描表 b,对于每一行数据,判断 join 条件(也就是 a.f1=b.f1 and a.f2=b.f2) 是否满足,满足条件的记录, 作为结果集的一行返回。如果语句中有 where 子句,需要先判断 where 部分满足条件后,再返回。
  3. 表 b 扫描完成后,对于没有被匹配的表 a 的行(在这个例子中就是 (1,1)、(2,2) 这两行),把剩余字段补上 NULL,再放入结果集中。

对应的流程图如下:

                                                 图 3 left join -BNL 算法

可以看到,这条语句确实是以表 a 为驱动表,而且从执行效果看,也和使用 straight_join 是一样的。

你可能会想,语句 Q2 的查询结果里面少了最后两行数据,是不是就是把上面流程中的步骤 3 去掉呢?我们还是先看一下语句 Q2 的 expain 结果吧。

                                                      图 4 Q2 的 explain 结果

这里先和你说一句题外话,专栏马上就结束了,我也和你一起根据 explain 结果“脑补”了很多次一条语句的执行流程了,所以我希望你已经具备了这个能力。今天,我们再一起分析一次 SQL 语句的 explain 结果。

可以看到,这条语句是以表 b 为驱动表的。而如果一条 join 语句的 Extra 字段什么都没写的话,就表示使用的是 Index Nested-Loop Join(简称 NLJ)算法。

因此,语句 Q2 的执行流程是这样的:顺序扫描表 b,每一行用 b.f1 到表 a 中去查,匹配到记录后判断 a.f2=b.f2 是否满足,满足条件的话就作为结果集的一部分返回。

那么,为什么语句 Q1 和 Q2 这两个查询的执行流程会差距这么大呢?其实,这是因为优化器基于 Q2 这个查询的语义做了优化。

为了理解这个问题,我需要再和你交代一个背景知识点:在 MySQL 里,NULL 跟任何值执行等值判断和不等值判断的结果,都是 NULL。这里包括, select NULL = NULL 的结果,也是返回 NULL。

因此,语句 Q2 里面 where a.f2=b.f2 就表示,查询结果里面不会包含 b.f2 是 NULL 的行,这样这个 left join 的语义就是“找到这两个表里面,f1、f2 对应相同的行。对于表 a 中存在,而表 b 中匹配不到的行,就放弃”。

这样,这条语句虽然用的是 left join,但是语义跟 join 是一致的。

因此,优化器就把这条语句的 left join 改写成了 join,然后因为表 a 的 f1 上有索引,就把表 b 作为驱动表,这样就可以用上 NLJ 算法。在执行 explain 之后,你再执行 show warnings,就能看到这个改写的结果,如图 5 所示。

                                                   图 5 Q2 的改写结果

这个例子说明,即使我们在 SQL 语句中写成 left join,执行过程还是有可能不是从左到右连接的。也就是说,使用 left join 时,左边的表不一定是驱动表。

这样看来,如果需要 left join 的语义,就不能把被驱动表的字段放在 where 条件里面做等值判断或不等值判断,必须都写在 on 里面。那如果是 join 语句呢?

这时候,我们再看看这两条语句:

 

 

 

select * from a join b on(a.f1=b.f1) and (a.f2=b.f2); /*Q3*/
select * from a join b on(a.f1=b.f1) where (a.f2=b.f2);/*Q4*/
复制代码

 

我们再使用一次看 explain 和 show warnings 的方法,看看优化器是怎么做的。

                                                      图 6 join 语句改写

可以看到,这两条语句都被改写成:

 

 

 

select * from a join b where (a.f1=b.f1) and (a.f2=b.f2);
复制代码

 

执行计划自然也是一模一样的。

也就是说,在这种情况下,join 将判断条件是否全部放在 on 部分就没有区别了。

Simple Nested Loop Join 的性能问题

我们知道,join 语句使用不同的算法,对语句的性能影响会很大。在第 34 篇文章《到底可不可以使用 join?》的评论区中,@书策稠浊 和 @朝夕心 两位同学提了一个很不错的问题。

我们在文中说到,虽然 BNL 算法和 Simple Nested Loop Join 算法都是要判断 M*N 次(M 和 N 分别是 join 的两个表的行数),但是 Simple Nested Loop Join 算法的每轮判断都要走全表扫描,因此性能上 BNL 算法执行起来会快很多。

为了便于说明,我还是先为你简单描述一下这两个算法。

BNL 算法的执行逻辑是:

  1. 首先,将驱动表的数据全部读入内存 join_buffer 中,这里 join_buffer 是无序数组;
  2. 然后,顺序遍历被驱动表的所有行,每一行数据都跟 join_buffer 中的数据进行匹配,匹配成功则作为结果集的一部分返回。

Simple Nested Loop Join 算法的执行逻辑是:顺序取出驱动表中的每一行数据,到被驱动表去做全表扫描匹配,匹配成功则作为结果集的一部分返回。
这两位同学的疑问是,Simple Nested Loop Join 算法,其实也是把数据读到内存里,然后按照匹配条件进行判断,为什么性能差距会这么大呢?

解释这个问题,需要用到 MySQL 中索引结构和 Buffer Pool 的相关知识点:

  1. 在对被驱动表做全表扫描的时候,如果数据没有在 Buffer Pool 中,就需要等待这部分数据从磁盘读入;
    从磁盘读入数据到内存中,会影响正常业务的 Buffer Pool 命中率,而且这个算法天然会对被驱动表的数据做多次访问,更容易将这些数据页放到 Buffer Pool 的头部(请参考第 35 篇文章中的相关内容);
  2. 即使被驱动表数据都在内存中,每次查找“下一个记录的操作”,都是类似指针操作。而 join_buffer 中是数组,遍历的成本更低。

     

所以说,BNL 算法的性能会更好。

distinct 和 group by 的性能

在第 37 篇文章《什么时候会使用内部临时表?》中,@老杨同志 提了一个好问题:如果只需要去重,不需要执行聚合函数,distinct 和 group by 哪种效率高一些呢?

我来展开一下他的问题:如果表 t 的字段 a 上没有索引,那么下面这两条语句:

 

 

 

select a from t group by a order by null;
select distinct a from t;
复制代码

 

的性能是不是相同的?

首先需要说明的是,这种 group by 的写法,并不是 SQL 标准的写法。标准的 group by 语句,是需要在 select 部分加一个聚合函数,比如:

 

 

 

select a,count(*) from t group by a order by null;
复制代码

 

这条语句的逻辑是:按照字段 a 分组,计算每组的 a 出现的次数。在这个结果里,由于做的是聚合计算,相同的 a 只出现一次。

备注:这里你可以顺便复习一下第 37 篇文章中关于 group by 的相关内容。

没有了 count(*) 以后,也就是不再需要执行“计算总数”的逻辑时,第一条语句的逻辑就变成是:按照字段 a 做分组,相同的 a 的值只返回一行。而这就是 distinct 的语义,所以不需要执行聚合函数时,distinct 和 group by 这两条语句的语义和执行流程是相同的,因此执行性能也相同。

 

这两条语句的执行流程是下面这样的。

  1. 创建一个临时表,临时表有一个字段 a,并且在这个字段 a 上创建一个唯一索引;
  2. 遍历表 t,依次取数据插入临时表中:                                                                                            a.如果发现唯一键冲突,就跳过;                                                                                                    b.否则插入成功;
  3. 遍历完成后,将临时表作为结果集返回给客户端。

备库自增主键问题

除了性能问题,大家对细节的追问也很到位。在第 39 篇文章《自增主键为什么不是连续的?》评论区,@帽子掉了 同学问到:在 binlog_format=statement 时,语句 A 先获取 id=1,然后语句 B 获取 id=2;接着语句 B 提交,写 binlog,然后语句 A 再写 binlog。这时候,如果 binlog 重放,是不是会发生语句 B 的 id 为 1,而语句 A 的 id 为 2 的不一致情况呢?

首先,这个问题默认了“自增 id 的生成顺序,和 binlog 的写入顺序可能是不同的”,这个理解是正确的。

其次,这个问题限定在 statement 格式下,也是对的。因为 row 格式的 binlog 就没有这个问题了,Write row event 里面直接写了每一行的所有字段的值。

而至于为什么不会发生不一致的情况,我们来看一下下面的这个例子。

 

 

 

create table t(id int auto_increment primary key);
insert into t values(null);
复制代码

 

                                                     图 7 insert 语句的 binlog

 

可以看到,在 insert 语句之前,还有一句 SET INSERT_ID=1。这条命令的意思是,这个线程里下一次需要用到自增值的时候,不论当前表的自增值是多少,固定用 1 这个值。

这个 SET INSERT_ID 语句是固定跟在 insert 语句之前的,比如 @帽子掉了同学提到的场景,主库上语句 A 的 id 是 1,语句 B 的 id 是 2,但是写入 binlog 的顺序先 B 后 A,那么 binlog 就变成:

 

 

 

SET INSERT_ID=2;
语句 B;
SET INSERT_ID=1;
语句 A;
复制代码

 

你看,在备库上语句 B 用到的 INSERT_ID 依然是 2,跟主库相同。

因此,即使两个 INSERT 语句在主备库的执行顺序不同,自增主键字段的值也不会不一致。

小结

在第 8 篇文章的评论区, @XD 同学提到一个问题:他查看了一下 innodb_trx,发现这个事务的 trx_id 是一个很大的数(281479535353408),而且似乎在同一个 session 中启动的会话得到的 trx_id 是保持不变的。当执行任何加写锁的语句后,trx_id 都会变成一个很小的数字(118378)。

你可以通过实验验证一下,然后分析看看,事务 id 的分配规则是什么,以及 MySQL 为什么要这么设计呢?

上期问题时间

上期的问题是,怎么给分区表 t 创建自增主键。由于 MySQL 要求主键包含所有的分区字段,所以肯定是要创建联合主键的。

这时候就有两种可选:一种是 (ftime, id),另一种是 (id, ftime)。

如果从利用率上来看,应该使用 (ftime, id) 这种模式。因为用 ftime 做分区 key,说明大多数语句都是包含 ftime 的,使用这种模式,可以利用前缀索引的规则,减少一个索引。

这时的建表语句是:

 

 

 

CREATE TABLE `t` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `ftime` datetime NOT NULL,
  `c` int(11) DEFAULT NULL,
  PRIMARY KEY (`ftime`,`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(ftime))
(PARTITION p_2017 VALUES LESS THAN (2017) ENGINE = MyISAM,
 PARTITION p_2018 VALUES LESS THAN (2018) ENGINE = MyISAM,
 PARTITION p_2019 VALUES LESS THAN (2019) ENGINE = MyISAM,
 PARTITION p_others VALUES LESS THAN MAXVALUE ENGINE = MyISAM);
复制代码

 

当然,我的建议是你要尽量使用 InnoDB 引擎。InnoDB 表要求至少有一个索引,以自增字段作为第一个字段,所以需要加一个 id 的单独索引。

 

 

 

CREATE TABLE `t` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `ftime` datetime NOT NULL,
  `c` int(11) DEFAULT NULL,
  PRIMARY KEY (`ftime`,`id`),
  KEY `id` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
PARTITION BY RANGE (YEAR(ftime))
(PARTITION p_2017 VALUES LESS THAN (2017) ENGINE = InnoDB,
 PARTITION p_2018 VALUES LESS THAN (2018) ENGINE = InnoDB,
 PARTITION p_2019 VALUES LESS THAN (2019) ENGINE = InnoDB,
 PARTITION p_others VALUES LESS THAN MAXVALUE ENGINE = InnoDB);
复制代码

 

当然把字段反过来,创建成:

 

 

 

  PRIMARY KEY (`id`,`ftime`),
  KEY `id` (`ftime`)
复制代码

 

也是可以的。

精选留言

看到 BNL 算法,你就应该知道这条语句的执行流程其实是这样
文章中的流程是写错了?还是我理解的有问题
1、如果是a表数据放入join buffer,根据b的每一条记录去判断是否在a中 如果在则保留记录
这个更像是b left join a。 而不是a left join b
2、如果按照这个流程,比如a里面有2行重复的数据, 如果拿b的数据在a中判断,存在则保留,那结果集只有一条数据, 而按照a left join b 会出现2条结果的
作者回复:
“如果按照这个流程,比如a里面有2行重复的数据, 如果拿b的数据在a中判断,存在则保留,那结果集只有一条数据,”

不会呀,你看它是这样的:
假设join buffer中有两个行1

然后被驱动表取出一个1,
跟join buffer中第一个1比较,发现满足条件,放到结果集;
跟join buffer中第二个1比较,发现满足条件,放到结果集;

是得到两行的

 

posted @ 2019-07-15 15:22  代码堆里的看客  阅读(323)  评论(0编辑  收藏  举报