java——线段树 SegmentTree
应用:
区间染色
区间查询
线段树不是完全二叉树,线段树是平衡二叉树
使用数组来实现线段树:存储空间为4n
以下是使用数组实现的静态线段树:
public class SegmentTree<E> { private E[] tree; private E[] data; private Merger<E> merger; public SegmentTree(E[] arr, Merger<E> merger) { this.merger = merger; data = (E[]) new Object[arr.length]; for(int i = 0 ; i < arr.length ; i ++) { data[i] = arr[i]; } tree = (E[]) new Object[4 * arr.length]; buildSegmentTree(0, 0, data.length - 1); } //在tree Index的位置创建表示区间[l ... r]的线段树 private void buildSegmentTree(int treeIndex, int l, int r) { if(l == r) { tree[treeIndex] = data[l]; return; } int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int mid = l + (r - l) / 2; buildSegmentTree(leftTreeIndex, l, mid); buildSegmentTree(rightTreeIndex, mid + 1, r); //根据业务组合线段树 tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]); } public E get(int index) { if(index < 0 || index >= data.length) { throw new IllegalArgumentException("Index is illegal."); } return data[index]; } public int getSize() { return data.length; } private int leftChild(int index) { return 2*index + 1; } private int rightChild(int index) { return 2*index + 2; } public E query(int queryL, int queryR) { if(queryL < 0 || queryL >= data.length || queryR < queryL){ throw new IllegalArgumentException("Index is illegal."); } return query(0, 0, data.length -1, queryL, queryR); } //查询线段树 //在以treeID为根的线段树中[l...r]的范围里,搜索区间[queryL...queryR]的值 private E query(int treeIndex, int l, int r, int queryL, int queryR) { if(l == queryL && r == queryR) { return tree[treeIndex]; } int mid = l + (r-l)/2; int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); if(queryL >= mid +1) { return query(rightTreeIndex, mid + 1, r, queryL, queryR); }else if(queryR <= mid) { return query(leftTreeIndex, l, mid, queryL, queryR); }else { //这种情况下产生了两段线段树,需要进行融合 E leftResult = query(leftTreeIndex, l, mid, queryL, mid); E rightResult = query(rightTreeIndex, mid + 1, r, mid + 1, queryR); return merger.merge(leftResult, rightResult); } } //将index位置的值更新为e public void set(int index, E e) { if(index < 0 || index >= data.length) { throw new IllegalArgumentException("Index is illegal"); } data[index] = e; set(0,0, data.length - 1, index, e); } private void set(int treeIndex, int l, int r, int index, E e) { if(l == r) { tree[treeIndex] = e; return; } int mid = l + (r - l) / 2; int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); if(index >= mid + 1) { set(rightTreeIndex, mid + 1, r, index, e); }else { set(leftTreeIndex, l, mid, index, e); } tree[treeIndex] = merger.merge(tree[leftTreeIndex], tree[rightTreeIndex]); } @Override public String toString() { StringBuilder res = new StringBuilder(); res.append('['); for(int i = 0 ; i < tree.length ; i ++) { if(tree[i] != null) { res.append(tree[i]); }else { res.append("null"); } if(i != tree.length - 1) { res.append(", "); } } res.append("]"); return res.toString(); } }
对于一个区间的更新:
懒惰更新:使用lazy数组记录未更新的内容,下一次访问时先访问lazy数组,若有内容,更新后再访问即可。
动态线段树:
使用链表实现
节省空间
可以不均等划分区间,便于实际应用