HRNet + Object Contextual Representation

文章内容来自CCF-CV走进高校报告会中MSRA王井东老师的报告“Learning high-resolution and object-contextual representations for semantic representation”

报告中主要介绍了 HRNet 和 OCR 两个方法。下面图中展示的是 timeline for deep semantic segmentation,可以看到 OCR 和 HRNet 是 2019 年提出比较有影响力的方法。而且在 Cityscapes segmentation leaderboard 上排名第一。

首先介绍第一个工作:HRNet: Deep High-Resolution Representation Learning for Visual Recognition, CVPR 2019

当前的语义分割方法需要高分辨率特征,主流方法是通过一个网络得到 低分辨 feature map,然后通过上采样或反卷积 恢复 到高分辨率

下面列举了一些经典方法,看起来不同,但本质核心思路是差不多的。这些方法存在一个缺点,分辨率由高到低会损失信息!

为了解决这个问题,团队提出了一个方法,核心思路是 “不恢复 到高分辨率,而是保持分辨率” 。具体图示如下,把不同分辨率的 feature map 并联,各个分辨率分别一路,“保持”信息。但是,这样仍有一个问题,就是 feature map 彼此之间没有交互。

为此,团队又给网络添加了一些内容,如下图红线所示,各路之间不断进行 repeated fusions。

交互的方式如下:上采样时,先双线性插值,然后用1x1的卷积处理;下采样时,采用步长为2,尺寸为3x3的卷积处理

这就是HRNet 的全部内容,下图是方法的总结:1)以往网络是串联,改为并联;2)以前是降分辨率,改为保持高分辨率;3)通过加强交互,进一步提高性能

现在介绍第二个工作:Object-Contextual Representations for Semantic Segmentation

当前的FCN没有解决好物体上下文信息。因为单独看一个象素,很难知道这个象素是属于某一个物体的,因为象素给我们的信息是RGB的信息,如果不给予足够多的上下文信息是很难判断的。下图列举了商汤的PSPNet和谷歌的ASPP。PSPNet通过给每个象素周围建立多尺度的表征获取上下文信息,当时这个方法取得了非常大的突破。同时谷歌的ASPP也用了类似于空洞卷积的方式来实现上下文信息获取。

当前方法分析上下文信息如下图所示,比如说红色点是我们关注的点,周围绿色几个点是采样出来的,可以看到,绿色点分为两部分,一部分是属于车的,还有一部分是属于背景的。当前方法并没有进行区分。

那我们该怎么办?我们找这个物体,要通过周围物体的象素表征来帮助。因此,我们需要把红色像素周围属于 object 的pixel取出来做为上下文,如下图所示:

具体如何做呢?首先用一个 baseline network 得到一个粗略的分割结果(黄色框中左半部分),同时,还会输出全图的 feature map。分割结果包括K类,我们把每个类别的特征提出来(黄色框中上半部分的特征),如下图所示:

然后, 把红色小方块的的特征经过变换,右边K个区域的特征也经过一个变换,然后计划一下相似度,如下图所示。相似度计算以后,就可以得到红色小方块属于各个类别的可能性。我们根据这个可能性把每个区域的表征进行加权,会得到当前像素增强的特征表示(object-contextual representation)。

这个方法非常容易解释,看上去也比较有道理,最终在cityscapes上可以达到 82.5%,这是目前的SOTA。

posted @ 2020-06-03 08:08  高峰OUC  阅读(2471)  评论(0编辑  收藏  举报