codeforces660C
Hard Process
You are given an array a with n elements. Each element of a is either 0 or 1.
Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a).
Input
The first line contains two integers n and k (1 ≤ n ≤ 3·105, 0 ≤ k ≤ n) — the number of elements in a and the parameter k.
The second line contains n integers ai (0 ≤ ai ≤ 1) — the elements of a.
Output
On the first line print a non-negative integer z — the maximal value of f(a) after no more than k changes of zeroes to ones.
On the second line print n integers aj — the elements of the array a after the changes.
If there are multiple answers, you can print any one of them.
Examples
Input
7 1
1 0 0 1 1 0 1
Output
4
1 0 0 1 1 1 1
Input
10 2
1 0 0 1 0 1 0 1 0 1
Output
5
1 0 0 1 1 1 1 1 0 1
sol:只能把0变成1,而且要让连续的一段尽可能的大,于是可以枚举右端点二分左端点,判断那一段0的个数与K的关系
#include <bits/stdc++.h> using namespace std; typedef int ll; inline ll read() { ll s=0; bool f=0; char ch=' '; while(!isdigit(ch)) { f|=(ch=='-'); ch=getchar(); } while(isdigit(ch)) { s=(s<<3)+(s<<1)+(ch^48); ch=getchar(); } return (f)?(-s):(s); } #define R(x) x=read() inline void write(ll x) { if(x<0) { putchar('-'); x=-x; } if(x<10) { putchar(x+'0'); return; } write(x/10); putchar((x%10)+'0'); return; } #define W(x) write(x),putchar(' ') #define Wl(x) write(x),putchar('\n') const int N=300005; int n,m,a[N],S[N]; int Ans[N]; inline int TwoFind(int l,int r) { int Pos=r,ans=r+1;; while(l<=r) { int mid=(l+r)>>1; if(S[Pos]-S[mid-1]<=m) { ans=mid; r=mid-1; } else l=mid+1; } return ans; } int main() { int i,Pos=0; R(n); R(m); for(i=1;i<=n;i++) { R(a[i]); S[i]+=S[i-1]+(a[i]==0); int oo=TwoFind(1,i); Ans[i]=i-oo+1; if(Ans[i]>Ans[Pos]) Pos=i; } Wl(Ans[Pos]); for(i=Pos;i>=1&&m;i--) if(a[i]==0) a[i]=1,m--; for(i=1;i<=n;i++) W(a[i]); return 0; } /* Input 7 1 1 0 0 1 1 0 1 Output 4 1 0 0 1 1 1 1 Input 10 2 1 0 0 1 0 1 0 1 0 1 Output 5 1 0 0 1 1 1 1 1 0 1 */
河田は河田、赤木は赤木……。
私は誰ですか。教えてください、私は誰ですか。
そうだ、俺はあきらめない男、三井寿だ!