洛谷P2698 [USACO12MAR]花盆Flowerpot
P2698 [USACO12MAR]花盆Flowerpot
题目描述
Farmer John has been having trouble making his plants grow, and needs your help to water them properly. You are given the locations of N raindrops (1 <= N <= 100,000) in the 2D plane, where y represents vertical height of the drop, and x represents its location over a 1D number line:
Each drop falls downward (towards the x axis) at a rate of 1 unit per second. You would like to place Farmer John's flowerpot of width W somewhere along the x axis so that the difference in time between the first raindrop to hit the flowerpot and the last raindrop to hit the flowerpot is at least some amount D (so that the flowers in the pot receive plenty of water). A drop of water that lands just on the edge of the flowerpot counts as hitting the flowerpot.
Given the value of D and the locations of the N raindrops, please compute the minimum possible value of W.
老板需要你帮忙浇花。给出N滴水的坐标,y表示水滴的高度,x表示它下落到x轴的位置。
每滴水以每秒1个单位长度的速度下落。你需要把花盆放在x轴上的某个位置,使得从被花盆接着的第1滴水开始,到被花盆接着的最后1滴水结束,之间的时间差至少为D。
我们认为,只要水滴落到x轴上,与花盆的边沿对齐,就认为被接住。给出N滴水的坐标和D的大小,请算出最小的花盆的宽度W。
输入输出格式
输入格式:
第一行2个整数 N 和 D。
第2.. N+1行每行2个整数,表示水滴的坐标(x,y)。
输出格式:
仅一行1个整数,表示最小的花盆的宽度。如果无法构造出足够宽的花盆,使得在D单位的时间接住满足要求的水滴,则输出-1。
输入输出样例
说明
【样例解释】
有4滴水, (6,3), (2,4), (4,10), (12,15).水滴必须用至少5秒时间落入花盆。花盆的宽度为2是必须且足够的。把花盆放在x=4..6的位置,它可以接到1和3水滴, 之间的时间差为10-3 = 7满足条件。
【数据范围】
40%的数据:1 ≤ N ≤ 1000,1 ≤ D ≤ 2000;
100%的数据:1 ≤ N ≤ 100000,1 ≤ D ≤ 1000000,0≤x,y≤10^6。
sol:单调队列蛮显然的吧(其实接近板子题)
维护一个递增的单调队列,当队尾与队首的高度差>D时弹队首,当队尾比当前元素大时弹队尾
#include <bits/stdc++.h> using namespace std; typedef long long ll; inline ll read() { ll s=0; bool f=0; char ch=' '; while(!isdigit(ch)) { f|=(ch=='-'); ch=getchar(); } while(isdigit(ch)) { s=(s<<3)+(s<<1)+(ch^48); ch=getchar(); } return (f)?(-s):(s); } #define R(x) x=read() inline void write(ll x) { if(x<0) { putchar('-'); x=-x; } if(x<10) { putchar(x+'0'); return; } write(x/10); putchar((x%10)+'0'); return; } #define W(x) write(x),putchar(' ') #define Wl(x) write(x),putchar('\n') const int N=100005,inf=0x3f3f3f3f; int n,D; struct Shuidi { ll X,Y; }Water[N]; inline bool cmp(Shuidi p,Shuidi q) { return p.X<q.X; } struct Record { ll Weiz,Shuz; }Ddq[N]; int main() { int i,j; R(n); R(D); for(i=1;i<=n;i++) { int x=read(),y=read(); Water[i]=(Shuidi){x,y}; } sort(Water+1,Water+n+1,cmp); int Head=1,Tail=0; ll ans=inf; for(i=1;i<=n;i++) { while(Head<Tail&&Water[Ddq[Head+1].Weiz].Y+D<=Water[Ddq[Tail].Weiz].Y) Head++; if(Water[Ddq[Head].Weiz].Y+D<=Water[Ddq[Tail].Weiz].Y) ans=min(ans,Ddq[Tail].Shuz-Ddq[Head].Shuz); while(Head<=Tail&&Water[Ddq[Tail].Weiz].Y>Water[i].Y) Tail--; Ddq[++Tail]=(Record){i,Water[i].X}; } if(ans==inf) puts("-1"); else Wl(ans); return 0; } /* input 4 5 6 3 2 4 4 10 12 15 output 2 */