PostgreSQL在何处处理 sql查询之五十一
继续分析 query_planner:
/* * query_planner * Generate a path (that is, a simplified plan) for a basic query, * which may involve joins but not any fancier features. * * Since query_planner does not handle the toplevel processing (grouping, * sorting, etc) it cannot select the best path by itself. It selects * two paths: the cheapest path that produces all the required tuples, * independent of any ordering considerations, and the cheapest path that * produces the expected fraction of the required tuples in the required * ordering, if there is a path that is cheaper for this than just sorting * the output of the cheapest overall path. The caller (grouping_planner) * will make the final decision about which to use. * * Input parameters: * root describes the query to plan * tlist is the target list the query should produce * (this is NOT necessarily root->parse->targetList!) * tuple_fraction is the fraction of tuples we expect will be retrieved * limit_tuples is a hard limit on number of tuples to retrieve, * or -1 if no limit * * Output parameters: * *cheapest_path receives the overall-cheapest path for the query * *sorted_path receives the cheapest presorted path for the query, * if any (NULL if there is no useful presorted path) * *num_groups receives the estimated number of groups, or 1 if query * does not use grouping * * Note: the PlannerInfo node also includes a query_pathkeys field, which is * both an input and an output of query_planner(). The input value signals * query_planner that the indicated sort order is wanted in the final output * plan. But this value has not yet been "canonicalized", since the needed * info does not get computed until we scan the qual clauses. We canonicalize * it as soon as that task is done. (The main reason query_pathkeys is a * PlannerInfo field and not a passed parameter is that the low-level routines * in indxpath.c need to see it.) * * Note: the PlannerInfo node includes other pathkeys fields besides * query_pathkeys, all of which need to be canonicalized once the info is * available. See canonicalize_all_pathkeys. * * tuple_fraction is interpreted as follows: * 0: expect all tuples to be retrieved (normal case) * 0 < tuple_fraction < 1: expect the given fraction of tuples available * from the plan to be retrieved * tuple_fraction >= 1: tuple_fraction is the absolute number of tuples * expected to be retrieved (ie, a LIMIT specification) * Note that a nonzero tuple_fraction could come from outer context; it is * therefore not redundant with limit_tuples. We use limit_tuples to determine * whether a bounded sort can be used at runtime. */ void query_planner(PlannerInfo *root, List *tlist, double tuple_fraction, double limit_tuples, Path **cheapest_path, Path **sorted_path, double *num_groups) { Query *parse = root->parse; List *joinlist; RelOptInfo *final_rel; Path *cheapestpath; Path *sortedpath; Index rti; double total_pages; /* Make tuple_fraction, limit_tuples accessible to lower-level routines */ root->tuple_fraction = tuple_fraction; root->limit_tuples = limit_tuples; *num_groups = 1; /* default result */ /* * If the query has an empty join tree, then it's something easy like * "SELECT 2+2;" or "INSERT ... VALUES()". Fall through quickly. */ if (parse->jointree->fromlist == NIL) { /* We need a trivial path result */ *cheapest_path = (Path *) create_result_path((List *) parse->jointree->quals); *sorted_path = NULL; /* * We still are required to canonicalize any pathkeys, in case it's * something like "SELECT 2+2 ORDER BY 1". */ root->canon_pathkeys = NIL; canonicalize_all_pathkeys(root); return; } /* * Init planner lists to empty. * * NOTE: append_rel_list was set up by subquery_planner, so do not touch * here; eq_classes and minmax_aggs may contain data already, too. */ root->join_rel_list = NIL; root->join_rel_hash = NULL; root->join_rel_level = NULL; root->join_cur_level = 0; root->canon_pathkeys = NIL; root->left_join_clauses = NIL; root->right_join_clauses = NIL; root->full_join_clauses = NIL; root->join_info_list = NIL; root->placeholder_list = NIL; root->initial_rels = NIL; /* * Make a flattened version of the rangetable for faster access (this is * OK because the rangetable won't change any more), and set up an empty * array for indexing base relations. */ setup_simple_rel_arrays(root); /* * Construct RelOptInfo nodes for all base relations in query, and * indirectly for all appendrel member relations ("other rels"). This * will give us a RelOptInfo for every "simple" (non-join) rel involved in * the query. * * Note: the reason we find the rels by searching the jointree and * appendrel list, rather than just scanning the rangetable, is that the * rangetable may contain RTEs for rels not actively part of the query, * for example views. We don't want to make RelOptInfos for them. */ add_base_rels_to_query(root, (Node *) parse->jointree); /* * Examine the targetlist and join tree, adding entries to baserel * targetlists for all referenced Vars, and generating PlaceHolderInfo * entries for all referenced PlaceHolderVars. Restrict and join clauses * are added to appropriate lists belonging to the mentioned relations. We * also build EquivalenceClasses for provably equivalent expressions. The * SpecialJoinInfo list is also built to hold information about join order * restrictions. Finally, we form a target joinlist for make_one_rel() to * work from. */ build_base_rel_tlists(root, tlist); find_placeholders_in_jointree(root); joinlist = deconstruct_jointree(root); /* * Reconsider any postponed outer-join quals now that we have built up * equivalence classes. (This could result in further additions or * mergings of classes.) */ reconsider_outer_join_clauses(root); /* * If we formed any equivalence classes, generate additional restriction * clauses as appropriate. (Implied join clauses are formed on-the-fly * later.) */ generate_base_implied_equalities(root); /* * We have completed merging equivalence sets, so it's now possible to * convert previously generated pathkeys (in particular, the requested * query_pathkeys) to canonical form. */ canonicalize_all_pathkeys(root); /* * Examine any "placeholder" expressions generated during subquery pullup. * Make sure that the Vars they need are marked as needed at the relevant * join level. This must be done before join removal because it might * cause Vars or placeholders to be needed above a join when they weren't * so marked before. */ fix_placeholder_input_needed_levels(root); /* * Remove any useless outer joins. Ideally this would be done during * jointree preprocessing, but the necessary information isn't available * until we've built baserel data structures and classified qual clauses. */ joinlist = remove_useless_joins(root, joinlist); /* * Now distribute "placeholders" to base rels as needed. This has to be * done after join removal because removal could change whether a * placeholder is evaluatable at a base rel. */ add_placeholders_to_base_rels(root); /* * We should now have size estimates for every actual table involved in * the query, and we also know which if any have been deleted from the * query by join removal; so we can compute total_table_pages. * * Note that appendrels are not double-counted here, even though we don't * bother to distinguish RelOptInfos for appendrel parents, because the * parents will still have size zero. * * XXX if a table is self-joined, we will count it once per appearance, * which perhaps is the wrong thing ... but that's not completely clear, * and detecting self-joins here is difficult, so ignore it for now. */ total_pages = 0; for (rti = 1; rti < root->simple_rel_array_size; rti++) { RelOptInfo *brel = root->simple_rel_array[rti]; if (brel == NULL) continue; Assert(brel->relid == rti); /* sanity check on array */ if (brel->reloptkind == RELOPT_BASEREL || brel->reloptkind == RELOPT_OTHER_MEMBER_REL) total_pages += (double) brel->pages; } root->total_table_pages = total_pages; /* * Ready to do the primary planning. */ final_rel = make_one_rel(root, joinlist); if (!final_rel || !final_rel->cheapest_total_path) elog(ERROR, "failed to construct the join relation"); /* * If there's grouping going on, estimate the number of result groups. We * couldn't do this any earlier because it depends on relation size * estimates that were set up above. * * Then convert tuple_fraction to fractional form if it is absolute, and * adjust it based on the knowledge that grouping_planner will be doing * grouping or aggregation work with our result. * * This introduces some undesirable coupling between this code and * grouping_planner, but the alternatives seem even uglier; we couldn't * pass back completed paths without making these decisions here. */ if (parse->groupClause) { List *groupExprs; groupExprs = get_sortgrouplist_exprs(parse->groupClause, parse->targetList); *num_groups = estimate_num_groups(root, groupExprs, final_rel->rows); /* * In GROUP BY mode, an absolute LIMIT is relative to the number of * groups not the number of tuples. If the caller gave us a fraction, * keep it as-is. (In both cases, we are effectively assuming that * all the groups are about the same size.) */ if (tuple_fraction >= 1.0) tuple_fraction /= *num_groups; /* * If both GROUP BY and ORDER BY are specified, we will need two * levels of sort --- and, therefore, certainly need to read all the * tuples --- unless ORDER BY is a subset of GROUP BY. Likewise if we * have both DISTINCT and GROUP BY, or if we have a window * specification not compatible with the GROUP BY. */ if (!pathkeys_contained_in(root->sort_pathkeys, root->group_pathkeys) || !pathkeys_contained_in(root->distinct_pathkeys, root->group_pathkeys) || !pathkeys_contained_in(root->window_pathkeys, root->group_pathkeys)) tuple_fraction = 0.0; /* In any case, limit_tuples shouldn't be specified here */ Assert(limit_tuples < 0); } else if (parse->hasAggs || root->hasHavingQual) { /* * Ungrouped aggregate will certainly want to read all the tuples, and * it will deliver a single result row (so leave *num_groups 1). */ tuple_fraction = 0.0; /* limit_tuples shouldn't be specified here */ Assert(limit_tuples < 0); } else if (parse->distinctClause) { /* * Since there was no grouping or aggregation, it's reasonable to * assume the UNIQUE filter has effects comparable to GROUP BY. Return * the estimated number of output rows for use by caller. (If DISTINCT * is used with grouping, we ignore its effects for rowcount * estimation purposes; this amounts to assuming the grouped rows are * distinct already.) */ List *distinctExprs; distinctExprs = get_sortgrouplist_exprs(parse->distinctClause, parse->targetList); *num_groups = estimate_num_groups(root, distinctExprs, final_rel->rows); /* * Adjust tuple_fraction the same way as for GROUP BY, too. */ if (tuple_fraction >= 1.0) tuple_fraction /= *num_groups; /* limit_tuples shouldn't be specified here */ Assert(limit_tuples < 0); } else { /* * Plain non-grouped, non-aggregated query: an absolute tuple fraction * can be divided by the number of tuples. */ if (tuple_fraction >= 1.0) tuple_fraction /= final_rel->rows; } /* * Pick out the cheapest-total path and the cheapest presorted path for * the requested pathkeys (if there is one). We should take the tuple * fraction into account when selecting the cheapest presorted path, but * not when selecting the cheapest-total path, since if we have to sort * then we'll have to fetch all the tuples. (But there's a special case: * if query_pathkeys is NIL, meaning order doesn't matter, then the * "cheapest presorted" path will be the cheapest overall for the tuple * fraction.) * * The cheapest-total path is also the one to use if grouping_planner * decides to use hashed aggregation, so we return it separately even if * this routine thinks the presorted path is the winner. */ cheapestpath = final_rel->cheapest_total_path; sortedpath = get_cheapest_fractional_path_for_pathkeys(final_rel->pathlist, root->query_pathkeys, NULL, tuple_fraction); /* Don't return same path in both guises; just wastes effort */ if (sortedpath == cheapestpath) sortedpath = NULL; /* * Forget about the presorted path if it would be cheaper to sort the * cheapest-total path. Here we need consider only the behavior at the * tuple fraction point. */ if (sortedpath) { Path sort_path; /* dummy for result of cost_sort */ if (root->query_pathkeys == NIL || pathkeys_contained_in(root->query_pathkeys, cheapestpath->pathkeys)) { /* No sort needed for cheapest path */ sort_path.startup_cost = cheapestpath->startup_cost; sort_path.total_cost = cheapestpath->total_cost; } else { /* Figure cost for sorting */ cost_sort(&sort_path, root, root->query_pathkeys, cheapestpath->total_cost, final_rel->rows, final_rel->width, 0.0, work_mem, limit_tuples); } if (compare_fractional_path_costs(sortedpath, &sort_path, tuple_fraction) > 0) { /* Presorted path is a loser */ sortedpath = NULL; } } *cheapest_path = cheapestpath; *sorted_path = sortedpath; }
这个就是对基本的查询的基本分析了。
下面,慢慢进行:
我的简单查询里面,有 from 子句,所以不满足如下这段,不会直接退出。
/* * If the query has an empty join tree, then it's something easy like * "SELECT 2+2;" or "INSERT ... VALUES()". Fall through quickly. */ if (parse->jointree->fromlist == NIL) { /* We need a trivial path result */ *cheapest_path = (Path *) create_result_path((List *) parse->jointree->quals); *sorted_path = NULL; /* * We still are required to canonicalize any pathkeys, in case it's * something like "SELECT 2+2 ORDER BY 1". */ root->canon_pathkeys = NIL; canonicalize_all_pathkeys(root); return; }
下面是初始化动作:
/* * Init planner lists to empty. * * NOTE: append_rel_list was set up by subquery_planner, so do not touch * here; eq_classes and minmax_aggs may contain data already, too. */ root->join_rel_list = NIL; root->join_rel_hash = NULL; root->join_rel_level = NULL; root->join_cur_level = 0; root->canon_pathkeys = NIL; root->left_join_clauses = NIL; root->right_join_clauses = NIL; root->full_join_clauses = NIL; root->join_info_list = NIL; root->placeholder_list = NIL; root->initial_rels = NIL;
下面这一段,也先把它当作一个简单的初始化理解:
/* * Make a flattened version of the rangetable for faster access (this is * OK because the rangetable won't change any more), and set up an empty * array for indexing base relations. */ setup_simple_rel_arrays(root);
接着,这是把 from 和 where 条件的 FromExpr型指针,变换为Node型指针,挂到 root上。
/* * Construct RelOptInfo nodes for all base relations in query, and * indirectly for all appendrel member relations ("other rels"). This * will give us a RelOptInfo for every "simple" (non-join) rel involved in * the query. * * Note: the reason we find the rels by searching the jointree and * appendrel list, rather than just scanning the rangetable, is that the * rangetable may contain RTEs for rels not actively part of the query, * for example views. We don't want to make RelOptInfos for them. */ add_base_rels_to_query(root, (Node *) parse->jointree);
将其展开:
/***************************************************************************** * * JOIN TREES * *****************************************************************************/ /* * add_base_rels_to_query * * Scan the query's jointree and create baserel RelOptInfos for all * the base relations (ie, table, subquery, and function RTEs) * appearing in the jointree. * * The initial invocation must pass root->parse->jointree as the value of * jtnode. Internally, the function recurses through the jointree. * * At the end of this process, there should be one baserel RelOptInfo for * every non-join RTE that is used in the query. Therefore, this routine * is the only place that should call build_simple_rel with reloptkind * RELOPT_BASEREL. (Note: build_simple_rel recurses internally to build * "other rel" RelOptInfos for the members of any appendrels we find here.) */ void add_base_rels_to_query(PlannerInfo *root, Node *jtnode) { if (jtnode == NULL) return; if (IsA(jtnode, RangeTblRef)) { int varno = ((RangeTblRef *) jtnode)->rtindex; (void) build_simple_rel(root, varno, RELOPT_BASEREL); } else if (IsA(jtnode, FromExpr)) { FromExpr *f = (FromExpr *) jtnode; ListCell *l; foreach(l, f->fromlist) add_base_rels_to_query(root, lfirst(l)); } else if (IsA(jtnode, JoinExpr)) { JoinExpr *j = (JoinExpr *) jtnode; add_base_rels_to_query(root, j->larg); add_base_rels_to_query(root, j->rarg); } else elog(ERROR, "unrecognized node type: %d", (int) nodeTag(jtnode)); }
这里面,有递归调用。
主要是因为这个:就是把from 里面每个表明,都挂在root上。
foreach(l, f->fromlist) add_base_rels_to_query(root, lfirst(l));
上述的递归调用时,进了 if (IsA(jtnode, RangeTblRef)) 的判断。会调用 build_simple_rel函数,展开了看:
/* * build_simple_rel * Construct a new RelOptInfo for a base relation or 'other' relation. */ RelOptInfo * build_simple_rel(PlannerInfo *root, int relid, RelOptKind reloptkind) { RelOptInfo *rel; RangeTblEntry *rte; /* Rel should not exist already */ Assert(relid > 0 && relid < root->simple_rel_array_size); if (root->simple_rel_array[relid] != NULL) elog(ERROR, "rel %d already exists", relid); /* Fetch RTE for relation */ rte = root->simple_rte_array[relid]; Assert(rte != NULL); rel = makeNode(RelOptInfo); rel->reloptkind = reloptkind; rel->relids = bms_make_singleton(relid); rel->rows = 0; rel->width = 0; rel->reltargetlist = NIL; rel->pathlist = NIL; rel->ppilist = NIL; rel->cheapest_startup_path = NULL; rel->cheapest_total_path = NULL; rel->cheapest_unique_path = NULL; rel->cheapest_parameterized_paths = NIL; rel->relid = relid; rel->rtekind = rte->rtekind; /* min_attr, max_attr, attr_needed, attr_widths are set below */ rel->indexlist = NIL; rel->pages = 0; rel->tuples = 0; rel->allvisfrac = 0; rel->subplan = NULL; rel->subroot = NULL; rel->fdwroutine = NULL; rel->fdw_private = NULL; rel->baserestrictinfo = NIL; rel->baserestrictcost.startup = 0; rel->baserestrictcost.per_tuple = 0; rel->joininfo = NIL; rel->has_eclass_joins = false; /* Check type of rtable entry */ switch (rte->rtekind) { case RTE_RELATION: /* Table --- retrieve statistics from the system catalogs */ get_relation_info(root, rte->relid, rte->inh, rel); break; case RTE_SUBQUERY: case RTE_FUNCTION: case RTE_VALUES: case RTE_CTE: /* * Subquery, function, or values list --- set up attr range and * arrays * * Note: 0 is included in range to support whole-row Vars */ rel->min_attr = 0; rel->max_attr = list_length(rte->eref->colnames); rel->attr_needed = (Relids *) palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids)); rel->attr_widths = (int32 *) palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32)); break; default: elog(ERROR, "unrecognized RTE kind: %d", (int) rte->rtekind); break; } /* Save the finished struct in the query's simple_rel_array */ root->simple_rel_array[relid] = rel; /* * If this rel is an appendrel parent, recurse to build "other rel" * RelOptInfos for its children. They are "other rels" because they are * not in the main join tree, but we will need RelOptInfos to plan access * to them. */ if (rte->inh) { ListCell *l; foreach(l, root->append_rel_list) { AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l); /* append_rel_list contains all append rels; ignore others */ if (appinfo->parent_relid != relid) continue; (void) build_simple_rel(root, appinfo->child_relid, RELOPT_OTHER_MEMBER_REL); } } return rel; }
核心是这个:
/* Save the finished struct in the query's simple_rel_array */ root->simple_rel_array[relid] = rel;
回到 query_planner 这个层面。
/* * Examine the targetlist and join tree, adding entries to baserel * targetlists for all referenced Vars, and generating PlaceHolderInfo * entries for all referenced PlaceHolderVars. Restrict and join clauses * are added to appropriate lists belonging to the mentioned relations. We * also build EquivalenceClasses for provably equivalent expressions. The * SpecialJoinInfo list is also built to hold information about join order * restrictions. Finally, we form a target joinlist for make_one_rel() to * work from. */ build_base_rel_tlists(root, tlist);
展开:
这个和我的简单查询关系也不大,因为我的简单查询没有什么表达式要计算:
/* * build_base_rel_tlists * Add targetlist entries for each var needed in the query's final tlist * to the appropriate base relations. * * We mark such vars as needed by "relation 0" to ensure that they will * propagate up through all join plan steps. */ void build_base_rel_tlists(PlannerInfo *root, List *final_tlist) { List *tlist_vars = pull_var_clause((Node *) final_tlist, PVC_RECURSE_AGGREGATES, PVC_INCLUDE_PLACEHOLDERS); if (tlist_vars != NIL) { add_vars_to_targetlist(root, tlist_vars, bms_make_singleton(0), true); list_free(tlist_vars); } }
那么下面这一段:
find_placeholders_in_jointree(root);
展开后可以看到,对于我的简单查询,没有 placeholderz,所以会直接返回:
/* * find_placeholders_in_jointree * Search the jointree for PlaceHolderVars, and build PlaceHolderInfos * * We don't need to look at the targetlist because build_base_rel_tlists() * will already have made entries for any PHVs in the tlist. */ void find_placeholders_in_jointree(PlannerInfo *root) { /* We need do nothing if the query contains no PlaceHolderVars */ if (root->glob->lastPHId != 0) { /* Start recursion at top of jointree */ Assert(root->parse->jointree != NULL && IsA(root->parse->jointree, FromExpr)); (void) find_placeholders_recurse(root, (Node *) root->parse->jointree); } }
接着往下看,这个先暂时无视。
joinlist = deconstruct_jointree(root);
接着:由于我的是简单查询,如下的两段,可以被无视。
/* * Reconsider any postponed outer-join quals now that we have built up * equivalence classes. (This could result in further additions or * mergings of classes.) */ reconsider_outer_join_clauses(root); /* * If we formed any equivalence classes, generate additional restriction * clauses as appropriate. (Implied join clauses are formed on-the-fly * later.) */ generate_base_implied_equalities(root);
再接着看下面这一段好了:
/* * We have completed merging equivalence sets, so it's now possible to * convert previously generated pathkeys (in particular, the requested * query_pathkeys) to canonical form. */ canonicalize_all_pathkeys(root);
展开:
/* * canonicalize_all_pathkeys * Canonicalize all pathkeys that were generated before entering * query_planner and then stashed in PlannerInfo. */ static void canonicalize_all_pathkeys(PlannerInfo *root) { root->query_pathkeys = canonicalize_pathkeys(root, root->query_pathkeys); root->group_pathkeys = canonicalize_pathkeys(root, root->group_pathkeys); root->window_pathkeys = canonicalize_pathkeys(root, root->window_pathkeys); root->distinct_pathkeys = canonicalize_pathkeys(root, root->distinct_pathkeys); root->sort_pathkeys = canonicalize_pathkeys(root, root->sort_pathkeys); }
/* * canonicalize_pathkeys * Convert a not-necessarily-canonical pathkeys list to canonical form. * * Note that this function must not be used until after we have completed * merging EquivalenceClasses. */ List * canonicalize_pathkeys(PlannerInfo *root, List *pathkeys) { List *new_pathkeys = NIL; ListCell *l; foreach(l, pathkeys) { PathKey *pathkey = (PathKey *) lfirst(l); EquivalenceClass *eclass; PathKey *cpathkey; /* Find the canonical (merged) EquivalenceClass */ eclass = pathkey->pk_eclass; while (eclass->ec_merged) eclass = eclass->ec_merged; /* * If we can tell it's redundant just from the EC, skip. * pathkey_is_redundant would notice that, but we needn't even bother * constructing the node... */ if (EC_MUST_BE_REDUNDANT(eclass)) continue; /* OK, build a canonicalized PathKey struct */ cpathkey = make_canonical_pathkey(root, eclass, pathkey->pk_opfamily, pathkey->pk_strategy, pathkey->pk_nulls_first); /* Add to list unless redundant */ if (!pathkey_is_redundant(cpathkey, new_pathkeys)) new_pathkeys = lappend(new_pathkeys, cpathkey); } return new_pathkeys; }
到这一步,心里有个感触,是否我需要把所有的 sql文再复习一遍?
由于我的简单查询 root->query_pathkeys 是NG, 所以就直接返回了。
接着再分析下一个调用:
这下面三段,都可以无视:
/* * Examine any "placeholder" expressions generated during subquery pullup. * Make sure that the Vars they need are marked as needed at the relevant * join level. This must be done before join removal because it might * cause Vars or placeholders to be needed above a join when they weren't * so marked before. */ fix_placeholder_input_needed_levels(root); /* * Remove any useless outer joins. Ideally this would be done during * jointree preprocessing, but the necessary information isn't available * until we've built baserel data structures and classified qual clauses. */ joinlist = remove_useless_joins(root, joinlist); /* * Now distribute "placeholders" to base rels as needed. This has to be * done after join removal because removal could change whether a * placeholder is evaluatable at a base rel. */ add_placeholders_to_base_rels(root);
再接着分析:
/* * We should now have size estimates for every actual table involved in * the query, and we also know which if any have been deleted from the * query by join removal; so we can compute total_table_pages. * * Note that appendrels are not double-counted here, even though we don't * bother to distinguish RelOptInfos for appendrel parents, because the * parents will still have size zero. * * XXX if a table is self-joined, we will count it once per appearance, * which perhaps is the wrong thing ... but that's not completely clear, * and detecting self-joins here is difficult, so ignore it for now. */ total_pages = 0; for (rti = 1; rti < root->simple_rel_array_size; rti++) { RelOptInfo *brel = root->simple_rel_array[rti]; if (brel == NULL) continue; Assert(brel->relid == rti); /* sanity check on array */ if (brel->reloptkind == RELOPT_BASEREL || brel->reloptkind == RELOPT_OTHER_MEMBER_REL) total_pages += (double) brel->pages; } root->total_table_pages = total_pages;
这是说,要得到总共的 页面数,好作为计划的依据。
但是我执行到此处,令我惊诧的是,得到的 root->total_table_pages 居然是0!
接下来的应该算是戏肉吧:
/* * Ready to do the primary planning. */ final_rel = make_one_rel(root, joinlist);