Spark aggregateByKey函数

aggregateByKey与aggregate类似,都是进行两次聚合,不同的是后者只对分区有效,前者对分区中key进一步细分

def aggregateByKey[U: ClassTag](zeroValue: U, partitioner: Partitioner)
    (seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)]
def aggregateByKey[U: ClassTag](zeroValue: U, numPartitions: Int)
    (seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)]
def aggregateByKey[U: ClassTag](zeroValue: U)
    (seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)]
//数据被分为两个分区
//分区1:(1,3),(1,2)
//分区2:(1, 4),(2,3),(2,4)
scala> var data = sc.parallelize(List((1,3),(1,2),(1, 4),(2,3),(2,4)),2)
data: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[7] at parallelize at <console>:24

//每个分区中按key聚合
scala> def InnerCom(a:Int, b:Int) : Int ={
     | println("InnerCom: " + a + "" + b)
     | math.max(a,b)
     | }
InnerCom: (a: Int, b: Int)Int

//分区间的聚合
scala> def PartitionCom(a:Int, b:Int) : Int ={
     | println("PartitionCom: " + a + "" + b)
     | a + b
     | }
PartitionCom: (a: Int, b: Int)Int

//第一个分区中只有一个key,两个元素
//聚合后结果为(1,3)
//第二个分区中两个key,1、2
//聚合后结果为(1,4)、(2,3)
//二次聚合后结果为(1,7)(2,4)
scala> data.aggregateByKey(2)(InnerCom, PartitionCom).collect
InnerCom: 23
InnerCom: 32
InnerCom: 24
InnerCom: 23
InnerCom: 34
PartitionCom: 34
res: Array[(Int, Int)] = Array((2,4), (1,7))

 

posted @ 2017-09-08 16:19  疯狂摇头的青蛙  阅读(1683)  评论(0编辑  收藏  举报