MySQL Execution Plan--DISTINCT语句优化

问题描述

在很多业务场景中业务需要过滤掉重复数据,对于MySQL数据库可以有多种SQL写法能实现这种需求,如:

  • 使用DISTINCT,如:

    SELECT DISTINCT username 
    FROM hotel_owner 
    WHERE username IN ('user001','user002');
    
  • 使用GROUP BY,如:

    SELECT username 
    FROM hotel_owner 
    WHERE username IN ('user001','user002')
    GROUP BY username;
    
  • 使用LIMIT 1,如:

    SELECT username 
    FROM(
        SELECT username
        FROM hotel_owner 
        WHERE username = 'user001'
        LIMIT 1
    ) AS T1
    UNION ALL
    SELECT username 
    FROM(
        SELECT username
        FROM hotel_owner 
        WHERE username = 'user002'
        LIMIT 1
    ) AS T2
    
  • 使用EXIST,如:

    SELECT username 
    FROM (
        SELECT 'user001' AS username
        UNION ALL
        SELECT 'user002' AS username
    ) AS T1
    WHERE EXISTS(
        SELECT username 
        FROM hotel_owner AS T2
        WHERE T1.username = T1.username
    )
    
  • 使用临时变量、使用公共表达式+rownumber(MYSQL 8.0)等其他

当前hotel_owner表上有索引idx_username(username),针对上面两个用户的数据量为:

mysql> SELECT username,count(1) AS usercount
    -> FROM hotel_owner
    -> WHERE username IN ('user001','user002')
    -> GROUP BY username;
+-------------+-----------+
| username    | usercount |
+-------------+-----------+
| user002 |     16455 |
| user001 |     18718 |
+-------------+-----------+
2 rows in set (0.02 sec)

上面4种SQL都能得到相同的执行结果,但查询性能相差50倍以上。

问题原因

MySQL Server架构可分为MySQL网络连接层、MySQL服务层、MySQL存储引擎层三层:

  • MySQL网络连接层,负责处理客户端请求连接。
  • MySQL服务层,负责解析SQL语句生成直接计划,由查询执行引擎与存储引擎层进行交互处理,将处理结果返回给客户端。
  • MySQL存储引擎层,负责MySQL中数据的存储与提取,与底层系统文件进行交互。MySQL存储引擎是插件式的,服务器中的查询执行引擎通过接口与存储引擎进行通信,接口屏蔽了不同存储引擎之间的差异 。

MySQL查询处理流程如下:

由于MySQL架构的分层设计和不同存储引擎内部实现的差异性,MySQL服务层的查询优化器无法针对某个存储引擎进行定制开发,导致MySQL查询优化器在某些场景下无法生成"相对更优"的执行计划,需要研发人员"使用查询提示"或"改写SQL语句"来改变SQL语句的执行计划和提示SQL语句的执行效率。

通过MySQL内部工具profiling能清楚得到上面四种SQL语句的实际执行耗时:

*************************** 1. row ***************************
Query_ID: 1
Duration: 0.02456375
   Query: SELECT DISTINCT username
FROM hotel_owner
WHERE username IN ('user001','user002')
*************************** 2. row ***************************
Query_ID: 2
Duration: 0.02770700
   Query: SELECT username
FROM hotel_owner
WHERE username IN ('user001','user002')
GROUP BY username
*************************** 3. row ***************************
Query_ID: 3
Duration: 0.00054050
   Query: SELECT username
FROM(
    SELECT username
    FROM hotel_owner
    WHERE username = 'user001'
    LIMIT 1
) AS T1
UNION ALL
SELECT username
FROM(
    SELECT username
    FROM hotel_owner
    WHERE username = 'user002'
    LIMIT 1
) AS T2
*************************** 4. row ***************************
Query_ID: 4
Duration: 0.00083600
   Query: SELECT username
FROM (
    SELECT 'user001' AS username
    UNION ALL
    SELECT 'user002' AS username
) AS T1
WHERE EXISTS(
    SELECT username
    FROM hotel_owner AS T2
    WHERE T1.username = T1.username
)

DISTINCT方式和GROUP BY方式耗时接近,耗时分别为24ms和27ms。

LIMIT 1方式和EXISTS方式耗时接近,耗时分别为0.5毫秒和0.8ms。

其中DISTINCT方式的执行计划和执行成本明细为:

mysql> DESC SELECT DISTINCT username
    -> FROM hotel_owner
    -> WHERE username IN ('user001','user002') \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: hotel_owner
   partitions: NULL
         type: range
possible_keys: idx_seq_usr,idx_username
          key: idx_username
      key_len: 152
          ref: NULL
         rows: 66282
     filtered: 100.00
        Extra: Using where; Using index
1 row in set, 1 warning (0.00 sec)

mysql> SHOW PROFILE CPU,BLOCK IO,SWAPS FOR QUERY 1;
+----------------------+----------+----------+------------+--------------+---------------+-------+
| Status               | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | Swaps |
+----------------------+----------+----------+------------+--------------+---------------+-------+
| starting             | 0.000065 |     NULL |       NULL |         NULL |          NULL |  NULL |
| checking permissions | 0.000006 |     NULL |       NULL |         NULL |          NULL |  NULL |
| Opening tables       | 0.000017 |     NULL |       NULL |         NULL |          NULL |  NULL |
| init                 | 0.000024 |     NULL |       NULL |         NULL |          NULL |  NULL |
| System lock          | 0.000007 |     NULL |       NULL |         NULL |          NULL |  NULL |
| optimizing           | 0.000008 |     NULL |       NULL |         NULL |          NULL |  NULL |
| statistics           | 0.000158 |     NULL |       NULL |         NULL |          NULL |  NULL |
| preparing            | 0.000018 |     NULL |       NULL |         NULL |          NULL |  NULL |
| Sorting result       | 0.000004 |     NULL |       NULL |         NULL |          NULL |  NULL |
| executing            | 0.000001 |     NULL |       NULL |         NULL |          NULL |  NULL |
| Sending data         | 0.024214 |     NULL |       NULL |         NULL |          NULL |  NULL |
| end                  | 0.000003 |     NULL |       NULL |         NULL |          NULL |  NULL |
| query end            | 0.000007 |     NULL |       NULL |         NULL |          NULL |  NULL |
| closing tables       | 0.000004 |     NULL |       NULL |         NULL |          NULL |  NULL |
| freeing items        | 0.000021 |     NULL |       NULL |         NULL |          NULL |  NULL |
| cleaning up          | 0.000008 |     NULL |       NULL |         NULL |          NULL |  NULL |
+----------------------+----------+----------+------------+--------------+---------------+-------+
16 rows in set, 1 warning (0.00 sec)

LIMIT 1方式的执行成本明细为:

mysql> DESC SELECT username
    -> FROM(
    ->     SELECT username
    ->     FROM hotel_owner
    ->     WHERE username = 'user001'
    ->     LIMIT 1
    -> ) AS T1
    -> UNION ALL
    -> SELECT username
    -> FROM(
    ->     SELECT username
    ->     FROM hotel_owner
    ->     WHERE username = 'user002'
    ->     LIMIT 1
    -> ) AS T2 \G
*************************** 1. row ***************************
           id: 1
  select_type: PRIMARY
        table: <derived2>
   partitions: NULL
         type: system
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1
     filtered: 100.00
        Extra: NULL
*************************** 2. row ***************************
           id: 2
  select_type: DERIVED
        table: hotel_owner
   partitions: NULL
         type: ref
possible_keys: idx_username
          key: idx_username
      key_len: 152
          ref: const
         rows: 34788
     filtered: 100.00
        Extra: Using index
*************************** 3. row ***************************
           id: 3
  select_type: UNION
        table: <derived4>
   partitions: NULL
         type: system
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1
     filtered: 100.00
        Extra: NULL
*************************** 4. row ***************************
           id: 4
  select_type: DERIVED
        table: hotel_owner
   partitions: NULL
         type: ref
possible_keys: idx_username
          key: idx_username
      key_len: 152
          ref: const
         rows: 31494
     filtered: 100.00
        Extra: Using index
4 rows in set, 1 warning (0.00 sec)

mysql> SHOW PROFILE CPU,BLOCK IO,SWAPS FOR QUERY 3;
+----------------------+----------+----------+------------+--------------+---------------+-------+
| Status               | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | Swaps |
+----------------------+----------+----------+------------+--------------+---------------+-------+
| starting             | 0.000099 |     NULL |       NULL |         NULL |          NULL |  NULL |
| checking permissions | 0.000003 |     NULL |       NULL |         NULL |          NULL |  NULL |
| checking permissions | 0.000004 |     NULL |       NULL |         NULL |          NULL |  NULL |
| Opening tables       | 0.000060 |     NULL |       NULL |         NULL |          NULL |  NULL |
| init                 | 0.000066 |     NULL |       NULL |         NULL |          NULL |  NULL |
| System lock          | 0.000007 |     NULL |       NULL |         NULL |          NULL |  NULL |
| optimizing           | 0.000004 |     NULL |       NULL |         NULL |          NULL |  NULL |
| optimizing           | 0.000008 |     NULL |       NULL |         NULL |          NULL |  NULL |
| statistics           | 0.000083 |     NULL |       NULL |         NULL |          NULL |  NULL |
| preparing            | 0.000018 |     NULL |       NULL |         NULL |          NULL |  NULL |
| executing            | 0.000001 |     NULL |       NULL |         NULL |          NULL |  NULL |
| Sending data         | 0.000027 |     NULL |       NULL |         NULL |          NULL |  NULL |
| statistics           | 0.000005 |     NULL |       NULL |         NULL |          NULL |  NULL |
| preparing            | 0.000005 |     NULL |       NULL |         NULL |          NULL |  NULL |
| optimizing           | 0.000004 |     NULL |       NULL |         NULL |          NULL |  NULL |
| optimizing           | 0.000003 |     NULL |       NULL |         NULL |          NULL |  NULL |
| statistics           | 0.000044 |     NULL |       NULL |         NULL |          NULL |  NULL |
| preparing            | 0.000006 |     NULL |       NULL |         NULL |          NULL |  NULL |
| executing            | 0.000001 |     NULL |       NULL |         NULL |          NULL |  NULL |
| Sending data         | 0.000020 |     NULL |       NULL |         NULL |          NULL |  NULL |
| statistics           | 0.000004 |     NULL |       NULL |         NULL |          NULL |  NULL |
| preparing            | 0.000002 |     NULL |       NULL |         NULL |          NULL |  NULL |
| executing            | 0.000002 |     NULL |       NULL |         NULL |          NULL |  NULL |
| Sending data         | 0.000007 |     NULL |       NULL |         NULL |          NULL |  NULL |
| executing            | 0.000001 |     NULL |       NULL |         NULL |          NULL |  NULL |
| Sending data         | 0.000002 |     NULL |       NULL |         NULL |          NULL |  NULL |
| end                  | 0.000002 |     NULL |       NULL |         NULL |          NULL |  NULL |
| query end            | 0.000007 |     NULL |       NULL |         NULL |          NULL |  NULL |
| removing tmp table   | 0.000002 |     NULL |       NULL |         NULL |          NULL |  NULL |
| query end            | 0.000001 |     NULL |       NULL |         NULL |          NULL |  NULL |
| closing tables       | 0.000001 |     NULL |       NULL |         NULL |          NULL |  NULL |
| removing tmp table   | 0.000003 |     NULL |       NULL |         NULL |          NULL |  NULL |
| closing tables       | 0.000001 |     NULL |       NULL |         NULL |          NULL |  NULL |
| removing tmp table   | 0.000002 |     NULL |       NULL |         NULL |          NULL |  NULL |
| closing tables       | 0.000009 |     NULL |       NULL |         NULL |          NULL |  NULL |
| freeing items        | 0.000021 |     NULL |       NULL |         NULL |          NULL |  NULL |
| cleaning up          | 0.000008 |     NULL |       NULL |         NULL |          NULL |  NULL |
+----------------------+----------+----------+------------+--------------+---------------+-------+
37 rows in set, 1 warning (0.00 sec)

DISTINCT方式和LIMIT 1方式都使用索引,其中最大耗时差异在Sending data部分。

DISTINCT方式的Sending data部分耗时:

| Sending data         | 0.024214 |     NULL |       NULL |         NULL |          NULL |  NULL |

LIMIT 1方式的Sending data部分耗时:

| Sending data         | 0.000027 |     NULL |       NULL |         NULL |          NULL |  NULL |
| Sending data         | 0.000020 |     NULL |       NULL |         NULL |          NULL |  NULL |
| Sending data         | 0.000007 |     NULL |       NULL |         NULL |          NULL |  NULL |

差异原因:

  • DISTINCT方式需要扫描所有满足WHERE条件的16455+18718条记录并将这些记录返回到MySQL Server层,由MySQL Server层负责数据去重处理(DISTINCT)并返回给客户端。
  • LIMIT 1方式针对每个子查询仅需要扫描到第1条满足WHERE条件的记录并将这些记录返回到MySQL Server层,由MySQL Server层负责数据合并(UNION ALL)并返回给客户端。

当满足WHERE条件的记录较少时,无论使用上述4种SQL种的任意1种方式都能快速返回结果,但随着满足WHERE条件的记录增多时,需要结合实际的业务需求和数据分布来编写"高效SQL"。

优化建议

在编写SQL语句时,不仅需要根据业务需求编写"正确SQL",还需要根据"实际数据分布"编写"高效SQL"。

posted @ 2023-04-21 16:44  TeyGao  阅读(49)  评论(0编辑  收藏  举报