深度学习 - Torch-TensorRT 推理加速
深度学习 - Torch-TensorRT 推理加速
Torch-TensorRT 作为 TorchScript 的扩展。 它优化并执行兼容的子图,让 PyTorch 执行剩余的图。 PyTorch 全面而灵活的功能集与 Torch-TensorRT 一起使用,解析模型并将优化应用于图的 TensorRT 兼容部分。
其中绿色部分是TensorRT支持的算子,白色的部分是不支持部分,则会在torch中兼容运算。
如果希望整个程序都在 TensorRT 中运算,则需要用到 TensorRT API 和 CUDA Plugin。
环境准备
- 安装 docker (>=19.03)
- 安装 nvidia-docker
- 启动 TensorRT 环境镜像(推荐使用:nvcr.io/nvidia/pytorch:23.01-py3)
- 安装 torch-tensorrt
!nvidia-smi
import torch
import tensorrt
import torch_tensorrt
print(torch.__version__)
print(torch.cuda.is_available())
print (tensorrt.__version__)
print (torch_tensorrt.__version__)
Tue Jul 11 02:11:17 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.125.06 Driver Version: 525.125.06 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 Off | 00000000:00:1E.0 Off | 0 |
| N/A 32C P8 9W / 70W | 2MiB / 15360MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
1.14.0a0+44dac51
True
8.5.2.2
1.4.0dev0
#准备数据(公开数据集下载4张测试图和分类信息)
!mkdir -p ./data
!wget -O ./data/img0.JPG "https://inaturalist-open-data.s3.amazonaws.com/photos/8698/large.jpg"
!wget -O ./data/img1.JPG "https://inaturalist-open-data.s3.amazonaws.com/photos/1697/large.jpg"
!wget -O ./data/img2.JPG "https://inaturalist-open-data.s3.amazonaws.com/photos/7697/large.jpg"
!wget -O ./data/img3.JPG "https://inaturalist-open-data.s3.amazonaws.com/photos/98797/large.jpg"
!wget -O ./data/imagenet_class_index.json "https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json"
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
import json
fig, axes = plt.subplots(nrows=2, ncols=2)
'''
图像进行预处理,加载后统一RGB通道,tensor(3, H, W)
缩放到统一尺寸,中心裁剪,将[0,255]像素值进行归一化处理
'''
for i in range(4):
img_path = './data/img%d.JPG'%i
img = Image.open(img_path)
print(img)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(img)
print(input_tensor.shape)
plt.subplot(2,2,i+1)
plt.imshow(img)
plt.axis('off')
import torch
import torchvision
# 加载分类信息
with open("./data/imagenet_class_index.json") as json_file:
d = json.load(json_file)
torch.hub._validate_not_a_forked_repo=lambda a,b,c: True
#加载带权重ResNet模型
resnet50_model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet50', weights=True)
resnet50_model.eval()
import numpy as np
import time
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
'''
图像进行预处理,加载后统一RGB通道,tensor(3, H, W)
缩放到统一尺寸,中心裁剪,将[0,255]像素值进行归一化处理
'''
#图片处理,固定输入尺寸 224x224
def rn50_preprocess():
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return preprocess
# 定义推理函数([predicted class, description], probability)
def predict(img_path, model, dtype='fp32'):
img = Image.open(img_path)
preprocess = rn50_preprocess()
input_tensor = preprocess(img)
if dtype=='fp16':
input_tensor = input_tensor.half()
#print(input_tensor.shape)
input_batch = input_tensor.unsqueeze(0) #增加一个batch通道,torch.Size([1, 3, 224, 224])
#print(input_batch.shape)
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch) #进行推理,得到1000个种类,torch.Size([1, 1000])
#print('output',output.shape)
sm_output = torch.nn.functional.softmax(output[0], dim=0) #torch.Size([1000])
#print('sm_output',sm_output.shape)
ind = torch.argmax(sm_output) #提取1000个种类中概率最高的类,index索引
#d包涵了所有种类
return d[str(ind.item())], sm_output[ind] #([predicted class, description], probability)
#测试推理是否正常
for i in range(4):
img_path = './data/img%d.JPG'%i #模板字符串
img = Image.open(img_path)
pred, prob = predict(img_path, resnet50_model)
print('{} - Predicted: {}, Probablility: {}'.format(img_path, pred, prob))
plt.subplot(2,2,i+1)
plt.imshow(img);
plt.axis('off');
plt.title(pred[1])
#定义批量测试
def benchmark(model, input_shape=(1024, 1, 224, 224), dtype='fp32', nwarmup=50, nruns=10000):
input_data = torch.randn(input_shape) #这里采用随机数不是真实图片
input_data = input_data.to("cuda")
if dtype=='fp16':
input_data = input_data.half()
print("Warm up ...")
with torch.no_grad():
for _ in range(nwarmup):
features = model(input_data)
torch.cuda.synchronize()
print("Start timing ...")
timings = []
with torch.no_grad():
for i in range(1, nruns+1):
start_time = time.time()
features = model(input_data)
torch.cuda.synchronize()
end_time = time.time()
timings.append(end_time - start_time)
if i%10==0:
print('Iteration %d/%d, ave batch time %.2f ms'%(i, nruns, np.mean(timings)*1000))
print("Input shape:", input_data.size())
print("Output features size:", features.size())
print('Average batch time: %.2f ms'%(np.mean(timings)*1000))
#进行测试
model = resnet50_model.eval().to("cuda")
benchmark(model, input_shape=(128, 3, 224, 224), nruns=100)
./data/img0.JPG - Predicted: ['n01978455', 'rock_crab'], Probablility: 0.943118691444397
./data/img1.JPG - Predicted: ['n01608432', 'kite'], Probablility: 0.25734055042266846
./data/img2.JPG - Predicted: ['n11939491', 'daisy'], Probablility: 0.3214719891548157
./data/img3.JPG - Predicted: ['n01749939', 'green_mamba'], Probablility: 0.9004988670349
#定义批量测试
def benchmark(model, input_shape=(1024, 1, 224, 224), dtype='fp32', nwarmup=50, nruns=10000):
input_data = torch.randn(input_shape) #这里采用随机数不是真实图片
input_data = input_data.to("cuda")
if dtype=='fp16':
input_data = input_data.half()
print("Warm up ...")
with torch.no_grad():
for _ in range(nwarmup):
features = model(input_data)
torch.cuda.synchronize()
print("Start timing ...")
timings = []
with torch.no_grad():
for i in range(1, nruns+1):
start_time = time.time()
features = model(input_data)
torch.cuda.synchronize()
end_time = time.time()
timings.append(end_time - start_time)
if i%10==0:
print('Iteration %d/%d, ave batch time %.2f ms'%(i, nruns, np.mean(timings)*1000))
print("Input shape:", input_data.size())
print("Output features size:", features.size())
print('Average batch time: %.2f ms'%(np.mean(timings)*1000))
#进行测试
model = resnet50_model.eval().to("cuda")
benchmark(model, input_shape=(128, 3, 224, 224), nruns=100)
//---------------------fp32---------------------------//
Warm up ...
Start timing ...
Iteration 10/100, ave batch time 331.21 ms
Iteration 20/100, ave batch time 331.77 ms
Iteration 30/100, ave batch time 332.27 ms
Iteration 40/100, ave batch time 332.61 ms
Iteration 50/100, ave batch time 332.98 ms
Iteration 60/100, ave batch time 333.25 ms
Iteration 70/100, ave batch time 333.58 ms
Iteration 80/100, ave batch time 333.87 ms
Iteration 90/100, ave batch time 334.19 ms
Iteration 100/100, ave batch time 334.49 ms
Input shape: torch.Size([128, 3, 224, 224])
Output features size: torch.Size([128, 1000])
Average batch time: 334.49 ms
//---------------------fp16---------------------------//
Warm up ...
Start timing ...
Iteration 10/100, ave batch time 149.22 ms
Iteration 20/100, ave batch time 149.37 ms
Iteration 30/100, ave batch time 149.38 ms
Iteration 40/100, ave batch time 149.46 ms
Iteration 50/100, ave batch time 149.51 ms
Iteration 60/100, ave batch time 149.58 ms
Iteration 70/100, ave batch time 149.63 ms
Iteration 80/100, ave batch time 149.69 ms
Iteration 90/100, ave batch time 149.78 ms
Iteration 100/100, ave batch time 149.84 ms
Input shape: torch.Size([128, 3, 224, 224])
Output features size: torch.Size([128, 1000])
Average batch time: 149.84 ms
下面测试 torch_tensorrt
#定义input数据类型和输入尺寸
myinputs = [
torch_tensorrt.Input( #动态尺寸,这里使用动态batch会报错
min_shape=[1, 3, 224, 224],
opt_shape=[1, 3, 224, 224],
max_shape=[1, 3, 224, 224],
dtype=torch.float32
)
]
myinputs = [
torch_tensorrt.Input( #固定的输入尺寸
[128, 3, 224, 224],
dtype=torch.float32
)
]
myinputs = [
torch.randn((1, 3, 224, 224),dtype=torch.float16) #通过输入tensor直接推测
]
enabled_precisions = {torch.float32, torch.float16}
model = resnet50_model.eval()
# 将 torch model 转成 tensorrt model
trt_model = torch_tensorrt.compile(model, inputs = myinputs, enabled_precisions = enabled_precisions)
print(trt_model)
RecursiveScriptModule(original_name=ResNet_trt)
#测试推理是否正常
for i in range(4):
img_path = './data/img%d.JPG'%i #模板字符串
img = Image.open(img_path)
pred, prob = predict(img_path, trt_model, dtype='fp16') #这里使用 trt_model
print('{} - Predicted: {}, Probablility: {}'.format(img_path, pred, prob))
plt.subplot(2,2,i+1)
plt.imshow(img);
plt.axis('off');
plt.title(pred[1])
./data/img0.JPG - Predicted: ['n01978455', 'rock_crab'], Probablility: 0.9439687728881836
./data/img1.JPG - Predicted: ['n01608432', 'kite'], Probablility: 0.2584533393383026
./data/img2.JPG - Predicted: ['n11939491', 'daisy'], Probablility: 0.32035374641418457
./data/img3.JPG - Predicted: ['n01749939', 'green_mamba'], Probablility: 0.9019732475280762
myinputs = [
torch.randn((128, 3, 224, 224),dtype=torch.float16) #通过输入tensor直接推测
]
enabled_precisions = {torch.float32, torch.float16}
model = resnet50_model.eval()
trt_model_fp16 = torch_tensorrt.compile(model, inputs = myinputs, enabled_precisions = enabled_precisions)
print(trt_model_fp16)
#进行性能测试
benchmark(trt_model_fp16, input_shape=(128, 3, 224, 224), dtype='fp16', nruns=100)
RecursiveScriptModule(original_name=ResNet_trt)
Warm up ...
Start timing ...
Iteration 10/100, ave batch time 59.09 ms
Iteration 20/100, ave batch time 59.67 ms
Iteration 30/100, ave batch time 59.72 ms
Iteration 40/100, ave batch time 60.00 ms
Iteration 50/100, ave batch time 60.27 ms
Iteration 60/100, ave batch time 60.18 ms
Iteration 70/100, ave batch time 60.36 ms
Iteration 80/100, ave batch time 60.35 ms
Iteration 90/100, ave batch time 60.38 ms
Iteration 100/100, ave batch time 60.45 m
Input shape: torch.Size([128, 3, 224, 224])
Output features size: torch.Size([128, 1000])
Average batch time: 60.45 ms
由此可以得出结论,不对模型做其他改动,在使用 半精度 + torch_tensorrt 的情况下,有5倍多的提升。
同样使用半精度,使用torch_tensorrt后相较于原模型也有1倍多的提升。