HIVE 调优思路和实践
1,数据存储调优
1.1 设置压缩:
设置中间数据/输出结果压缩传输,使用snappy格式。
hive-site.xml:
set hive.exec.compress.output = true # 输出结果压缩
set hive.exec.compress.intermediate = true # 中间结果压缩
具体压缩算法配置:
mapred-default.xml(Hadoop 安装目录内):
mapreduce.map.output.compress = true # map任务输出压缩
mapreduce.map.output.compress.codec = Snappy #压缩算法
mapreduce.output.fileoutputformat.compress # reducer 输出压缩
mapreduce.output.fileoutputformat.compress.codec # reducer 压缩算法
mapreduce.output.fileoutputformat.compress.type #reducer 压缩类型
1.2 增加热数据的副本数. 减少传输延迟。
hdfs系统的副本数是固定的。这里是修改单个文件的副本数量。
在写入表(文件)时设置:
set dfs.replication=10; # dfs默认3
Insert overwrite table tmp.dim_test select * from other_table;
或者在hdfs 内,上传文件时修改;
hadoop dfs -D dfs.replication=2 -put dim_test.txt /***/
2,常见配置项调优
2.1 当查询的数据量足够小时,启用本地模式。
hive-site.xml:
hive.exec.mode.local.auto = true # 自动启动local 模式
hive.exec.mode.local.auto.inputbytes.max = 50000000 # 最大字节数的阈值
2.2 在一些可以设置并行执行的任务中,配置 parallel
可以运行并行的任务,比如 在join 之前,对多个数据源的处理。 还有移动多个数据源插入目标表。
hive.exec.parallel = true # 并行运行
hive.exec.parallel.thread.number = 8 # 最多线程数
2.3 Fetch task获取数据,直接读取文件,不MR。 某些简单操作适用。
hive.fetch.task.conversion = more # 对 SELECT, FILTER, LIMIT only UDFs, 有效
2.4 更换执行引擎: spark tez mr
hive.execution.engine = spark # 设置spark引擎
3,计算代码级调优
3.1,去重算法调优
不可使用DISTINCT;Hive去重最佳方法----row_number() ,模拟了分区排序。map 内分区排序,reduce内 归并排序,效率高。
举例对 客户表(id , name , order_id , data )去重, 假设数据量非常大。
3.2 排序算法
order by :一个reduce,全局排序,性能差。 数据量较少时,可以使用
sort by : map端排序完成,分区输出,局部有序。
distribute by:按照指定的字段对数据进行划分到不同的输出reduce
cluster by 除了具有 distribute by 的功能外还兼具 sort by 的功能,建议使用。
4,常见问题调优
4.1 、小文件太多如何调优
4.1.1,调用 hdfs的方法合并小文件,sync() append() 文件层面; 或者使用hadoop 管理命令合并;
举例 : 每日产生大量product_info_* 的文件, 合并这些文件
hadoop fs -getmerge /hdfs_path/product_info_* /local_path/product_inf # 合并后保存到本地
hadoop fs -put /local_path/product_inf /hdfs_path # 合并文件再上传到hdfs
4.1.2, Hadoop archive 命令, 解决对于NN 内存问题。 但是不能解决计算中的问题
可以更有效的把大量小文件打包放入block,因此减少NameNode压力。
hadoop archive -archiveName name -p <parent> <src>* <dest> # 打包成 .har文件
4.1.3,SequenceFile ,使用文件名作为 key,文件内容作为 value。支持mr分块处理,支持压缩
最好将源数据直接写入 SequenceFile,而不是作为中间步骤写入小文件。
4.2 、数据倾斜如何调优
本质原因是,1,发生大量数据的网络传输 2,磁盘IO速度缓慢
4.2.1 配置项
hive.optimize.skewjoin=true; #默认false,如果存在数据倾斜可能性,可以将其设置为true
SET hive.skewjoin.key=100000; #默认为100000,如果key的数量大于配置的值,则超过的数量的key对应的数据会被发送到其他的reduce任务
hive.groupby.skewindata=true #在分组任务,首先额外触发一个mr作业,该作业的map任务的输出会被随机地分配到reduce任务上,从而避免数据倾斜
hive.auto.convert.join=true # 大表和小表连接问题, 新版可以配置后,自动识别到此情况。
4.2.2 代码级
1,行列裁剪; 2个都是分桶表,连接key是分桶字段。 只读取需要的桶数据。
select name , order from table_a where date >= '2008-03-01' AND date <= '2008-03-31'
2,大表和大表连接问题
1,Key 字段加随机字段,把分区打散。
比如, a 和 b 表连接,连接的key集中于 date = 20200120
2,把2个表定义为 ”有序分桶表“ 使用 BUCKET MAP JOIN / SORT MERGE BUCKET MAP JOIN // 分桶 有序