Python3与OpenCV3.3 图像处理(四)--色彩空间
一、本节简述
本节讲解图像色彩空间的处理和色彩空间的基础知识
二、色彩空间基础知识
什么是色彩空间,人们建立了多种色彩模型,以一维、二维、三维甚至四维空间坐标来表示某一色彩,这种坐标系统所能定义的色彩范围即色彩空间
色彩空间有很多,但是常用的色彩空间一共5种:RGB、HSV、HSI、YCrCb、YUV,简单讲一下这5个色彩空间。
- RGB就不用多说了,RGB是我门经常用到的;
- HSV也称六角锥体模型,是根据颜色的直观特性创建的一种颜色空间,这个颜色空间是本节课讲解的一个重点。
- HSI是从人的视觉系统出发,用色调( Hue )、色饱和 度( Saturation 或 Chroma )和亮度( Intensity 或 Brightness )来描述颜色。 HSI 颜色空间可以用一个圆 锥空间模型来描述
- YCrCb主要用于优化彩色视频信号的传输,使其向后相容老式黑白电视,这个可以用来检测皮肤和检测人脸
- YUV是被欧洲电视系统所采用的一种颜色编码方法(属于PAL),是PAL和SECAM模拟彩色电视制式采用的颜色空间。
三、色彩空间的转换
OpenCV提供多种将图像的色彩空间转换为另一个色彩空间的方法,转换方法的方法名一般为 “原色彩空间2需要转化的色彩空间”,下面我们以图像的RGB色彩转换为其他四种色彩空间和GRAY色彩空间。
def ColorSpace(image): """ 色彩空间转化 RGB转换为其他色彩空间 """ gray=cv.cvtColor(image,cv.COLOR_BGR2GRAY) cv.imshow("gray",gray) hs