【DeepLearning】Exercise:Softmax Regression
Exercise:Softmax Regression
习题的链接:Exercise:Softmax Regression
softmaxCost.m
function [cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, data, labels) % numClasses - the number of classes % inputSize - the size N of the input vector % lambda - weight decay parameter % data - the N x M input matrix, where each column data(:, i) corresponds to % a single test set % labels - an M x 1 matrix containing the labels corresponding for the input data % % Unroll the parameters from theta theta = reshape(theta, numClasses, inputSize); numCases = size(data, 2); % labels row, numCases col groundTruth = full(sparse(labels, 1:numCases, 1)); cost = 0; thetagrad = zeros(numClasses, inputSize); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the cost and gradient for softmax regression. % You need to compute thetagrad and cost. % The groundTruth matrix might come in handy. M = theta * data; M = bsxfun(@minus, M, max(M, [], 1)); M = exp(M); M = bsxfun(@rdivide, M, sum(M)); diff = groundTruth - M; cost = -(1/numCases) * sum(sum(groundTruth .* log(M))) + (lambda/2) * sum(sum(theta .* theta)); for i=1:numClasses thetagrad(i, :) = -(1/numCases) * (sum(data .* repmat(diff(i, :), inputSize, 1), 2))' + lambda * theta(i, :); end % ------------------------------------------------------------------ % Unroll the gradient matrices into a vector for minFunc grad = [thetagrad(:)]; end
softmaxPredict.m
function [pred] = softmaxPredict(softmaxModel, data) % softmaxModel - model trained using softmaxTrain % data - the N x M input matrix, where each column data(:, i) corresponds to % a single test set % % Your code should produce the prediction matrix % pred, where pred(i) is argmax_c P(y(c) | x(i)). % Unroll the parameters from theta theta = softmaxModel.optTheta; % this provides a numClasses x inputSize matrix pred = zeros(1, size(data, 2)); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute pred using theta assuming that the labels start % from 1. [~, pred] = max(theta * data); % --------------------------------------------------------------------- end
Accuracy: 92.640%