【LeetCode】84. Largest Rectangle in Histogram

Largest Rectangle in Histogram

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

 

The largest rectangle is shown in the shaded area, which has area = 10 unit.

 

For example,
Given height = [2,1,5,6,2,3],
return 10.

 

首先想到一种最直观的方法:把平面看做大矩阵,条形看做1,非条形看做0,寻找最大全1矩阵。

思路上是正确的,可以用DP来做,不过会超时。

 

网上看到一种借助栈的做法,代码很漂亮,但是解释都非常模糊,我看懂之后,决定仔细描述思路如下:

1、如果已知height数组是升序的,应该怎么做?

比如1,2,5,7,8

那么就是(1*5) vs. (2*4) vs. (5*3) vs. (7*2) vs. (8*1)

也就是max(height[i]*(size-i))

2、使用栈的目的就是构造这样的升序序列,按照以上方法求解。

但是height本身不一定是升序的,应该怎样构建栈?

比如2,1,5,6,2,3

(1)2进栈。s={2}, result = 0

(2)1比2小,不满足升序条件,因此将2弹出,并记录当前结果为2*1=2。

将2替换为1重新进栈。s={1,1}, result = 2

(3)5比1大,满足升序条件,进栈。s={1,1,5},result = 2

(4)6比5大,满足升序条件,进栈。s={1,1,5,6},result = 2

(5)2比6小,不满足升序条件,因此将6弹出,并记录当前结果为6*1=6。s={1,1,5},result = 6

2比5小,不满足升序条件,因此将5弹出,并记录当前结果为5*2=10(因为已经弹出的5,6是升序的)。s={1,1},result = 10

2比1大,将弹出的5,6替换为2重新进栈。s={1,1,2,2,2},result = 10

(6)3比2大,满足升序条件,进栈。s={1,1,2,2,2,3},result = 10

栈构建完成,满足升序条件,因此按照升序处理办法得到上述的max(height[i]*(size-i))=max{3*1, 2*2, 2*3, 2*4, 1*5, 1*6}=8<10

综上所述,result=10

class Solution {
public:
    int largestRectangleArea(vector<int> &height) {
        int ret = 0;
        stack<int> stk;
        for(int i = 0; i < height.size(); i ++)
        {
            if(stk.empty() || stk.top() <= height[i])
                stk.push(height[i]);
            else
            {
                int count = 0;
                while(!stk.empty() && stk.top() > height[i])
                {
                    count ++;
                    ret = max(ret, stk.top()*count);
                    stk.pop();
                }
                while(count --)
                    stk.push(height[i]);
                stk.push(height[i]);
            }
        }
        int count = 1;
        while(!stk.empty())
        {
            ret = max(ret, stk.top()*count);
            stk.pop();
            count ++;
        }
        return ret;
    }
};

posted @ 2014-12-06 15:24  陆草纯  阅读(8398)  评论(1编辑  收藏  举报