【LeetCode】136. Single Number (4 solutions)
Single Number
Given an array of integers, every element appears twice except for one. Find that single one.
Note:
Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?
解法一:用map记录每个元素的次数,返回次数为1的元素
class Solution { public: map<int,int> m; int singleNumber(vector<int>& nums) { for(int i = 0; i < nums.size(); i ++) { if(m.find(nums[i]) == m.end()) m[nums[i]] = 1; else m[nums[i]] = 2; } for(map<int,int>::iterator it = m.begin(); it != m.end(); it ++) { if(it->second == 1) return it->first; } } };
解法二:利用异或操作的结合律。
同一数字x异或自己结果为0.x^x=0
任何数字x异或0结果为x.x^0=x
class Solution { public: int singleNumber(vector<int>& nums) { if(nums.empty()) return 0; int ret = nums[0]; for(int i = 1; i < nums.size(); i ++) ret ^= nums[i]; return ret; } };
解法三:先排序,再遍历找出孤异元素
class Solution { public: int singleNumber(vector<int>& nums) { sort(nums.begin(), nums.end()); //A has at least 3 elements if(nums[0] != nums[1]) return nums[0]; int n = nums.size(); if(nums[n-1] != nums[n-2]) return nums[n-1]; for(int i = 1; i < n-1; i ++) { if(nums[i] != nums[i-1] && nums[i] != nums[i+1]) return nums[i]; } } };
解法四:
位操作。不管非孤异元素重复多少次,这是通用做法。
对于右数第i位,如果孤异元素该位为0,则该位为1的元素总数为2的整数倍。
如果孤异元素该位为1,则该位为1的元素总数不为2的整数倍(也就是余1)。
换句话说,如果第i位为1的元素总数不为2的整数倍,则孤异数的第i位为1,否则为0.
(如果非孤异元素重复n次,则判断是否为n的整数倍)
class Solution { public: int singleNumber(vector<int>& nums) { int count; int result = 0; int ind = 1; //mask position int n = nums.size(); while(ind) { count = 0; for(int i = 0; i < n; i ++) { if(nums[i] & ind) count ++; } if(count % 2) result |= ind; ind <<= 1; } return result; } };