7.7
今天主要完成数据结构第二阶段的作业 迷宫问题 学习时间2小时 代码时间1小时
#include <stdio.h>
#include <malloc.h>
#define STACK_INIT_SIZE 100
#define STACKINCREMENT 10
//记录通道块在迷宫矩阵当中的横、纵坐标
struct Position {
int x;
int y;
};
//放入栈当中的通道块元素
struct SElement {
int ord;//记录步数
Position p;//记录位置
int di;//记录下一次测试这一路径的临近路径的位置
};
struct MyStack {
SElement* base;
SElement* top;
int stacksize;
};
//创建一个栈如果创建成功则返回1,否则就返回0
int InitStack(MyStack* s)
{
s->base = (SElement*)malloc(STACK_INIT_SIZE * sizeof(SElement));//为栈分配初始空间
if (!s->base) return 0;
s->top = s->base;//设定为空栈
s->stacksize = STACK_INIT_SIZE;
return 1;
}
//判断栈是否为空,如果是空的就返回0,否则就返回1
int IsStackEmpty(MyStack* s)
{
if (s->top == s->base) return true;
return false;
}
//获取栈顶元素,如果栈为空就返回0 否则就返回1
int GetTop(MyStack* s, SElement* e)
{
if (IsStackEmpty(s)) return 0;
e = s->top - 1;
return 1;
}
//获取栈的长度,并且通过程序返回
int StackLength(MyStack* s)
{
return s->top - s->base;
}
//插入元素e为新的栈顶元素,插入成功则返回1,否则返回0
int Push(MyStack* s, SElement e)
{
if (s->top - s->base >= STACK_INIT_SIZE)
{
s->base = (SElement*)realloc(s->base, (s->stacksize + STACKINCREMENT) * sizeof(SElement));
if (!s->base) return 0;
s->top = s->base + s->stacksize;
s->stacksize += STACKINCREMENT;
}
*(s->top) = e;
s->top++;
return 1;
}
//弹出栈顶元素赋值给e弹出成功返回1,弹出失败返回0
int Pop(MyStack* s, SElement* e)
{
if (IsStackEmpty(s)) return 0;
*e = *(s->top - 1);
s->top--;
return 1;
}
//定义墙元素为1 可走路径为0 已知路径为curStep 不能够通过的路径为-2
#define m 15
#define n 18
int Maze[m][n] = { { 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 },
{ 1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1 },
{ 1,0,1,1,1,0,1,0,0,1,0,1,1,1,1,1,0,1 },
{ 1,0,1,1,1,0,1,0,1,1,0,1,0,1,1,0,0,1 },
{ 1,0,0,0,0,0,1,0,1,1,0,1,0,0,0,0,1,1 },
{ 1,1,1,1,0,0,1,0,1,1,0,1,1,1,1,0,1,1 },
{ 1,1,1,0,0,1,1,0,1,1,0,0,0,1,1,1,1,1 },
{ 1,1,1,0,1,1,1,0,1,1,1,1,0,1,1,0,0,1 },
{ 1,1,1,0,0,0,0,0,0,0,1,1,0,1,1,0,1,1 },
{ 1,0,0,1,1,1,1,1,1,0,1,1,0,1,0,0,1,1 },
{ 1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,1,1,1 },
{ 1,0,0,1,0,1,0,1,0,0,1,1,0,0,0,1,1,1 },
{ 1,1,0,1,0,1,0,1,1,1,0,0,0,1,1,1,1,1 },
{ 1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1 },
{ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 } };
//辅助函数考察当前路径能否通过
bool Pass(Position posi)
{
//只有路径所在位置的数字为0的是可以走的
if (Maze[posi.x][posi.y] == 0)
{
return true;
}
return false;
}
//按顺时针方向从右开始寻找矩阵当中某一个位置的临近位置
Position NextPosition(Position now, int direction)
{
Position next;
int x = now.x;
int y = now.y;
switch (direction)
{
//右
case 1: {
next.x = x;
next.y = y + 1;
break;
}
//下
case 2: {
next.x = x + 1;
next.y = y;
break;
}
//左
case 3: {
next.x = x;
next.y = y - 1;
break;
}
//上
case 4:
{
next.x = x - 1;
next.y = y;
break;
}
default:break;
}
return next;
}
//改变改点为步骤数
void FootPrint(Position p, int step)
{
Maze[p.x][p.y] = step;
}
//路径不可走的话就留下-2的标记
void MarkPrint(Position p)
{
Maze[p.x][p.y] = -2;
}
//打印出迷宫矩阵
void Display_migong()
{
for (int i = 0; i<m; i++)
{
for (int j = 0; j<n; j++)
{
if (Maze[i][j]<0)
printf("%d ", Maze[i][j]);
else if (Maze[i][j]<10)
printf("%d ", Maze[i][j]);
else
printf("%d ", Maze[i][j]);
}
printf("\n");
}
}
int main()
{
struct Position path1[m * n]; // 最多能存储m*n个坐标
int pathCount = 0; // 当前已存储的坐标数量
//迷宫程序主体
MyStack path;//记录路径的栈
InitStack(&path);//初始化路径数组
Position curp;//当前被试位置
Display_migong();
//初始化当前位置为矩阵入口
curp.x = 1;
curp.y = 1;
int curStep = 1;//被探索的步数
do
{
if (Pass(curp))
{
FootPrint(curp, curStep);//可走就在迷宫里面留下足迹
//创建一个栈元素,存储可行路径的相关值,将这个元素存储到栈当中
SElement e;
e.di = 1;//下一个路块为这一个路块的右边的路块
e.ord = curStep;
e.p.x = curp.x;
e.p.y = curp.y;
Push(&path, e);//将路径块入栈
path1[pathCount++] = curp;
if (curp.x == m - 2 && curp.y == n - 2) break; //如果被压入的路径块到了迷宫的终点就退出循环
curp = NextPosition(curp, 1);//找到前一个被试块东面的路径块作为被试块
curStep++;//被探索的步数加一
}
else//如果当前被试路径不能够通过的话
{
if (!IsStackEmpty(&path))
{
SElement e;
Pop(&path, &e);
curStep--;
//将所有的周围路径都已经被测试过的路径从栈中清除
while (e.di == 4 && !IsStackEmpty(&path)) {
MarkPrint(e.p);
Pop(&path, &e);
curStep--;
}
//如果当前栈顶还有未被测试的路径就测试剩余的周围路径
if (e.di<4)
{
curp = NextPosition(e.p, e.di + 1);
e.di++;
curStep++;
Push(&path, e);
}
}
}
} while (!IsStackEmpty(&path));
printf("\n");
//打印出结果迷宫矩阵
Display_migong();
for (int i = 0; i < pathCount; i++) {
printf("(%d, %d)->", path1[i].x, path1[i].y);
}
return 0;
}