【LeetCode】79. 单词搜索
题目
给定一个二维网格和一个单词,找出该单词是否存在于网格中。
单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。
示例:
board =
[
['A','B','C','E'],
['S','F','C','S'],
['A','D','E','E']
]
给定 word = "ABCCED", 返回 true.
给定 word = "SEE", 返回 true.
给定 word = "ABCB", 返回 false.
思路
同 【剑指Offer】面试题12. 矩阵中的路径
以每个位置开头检查是否存在路径。
代码
时间复杂度:O(n * m)
空间复杂度:O(1)
class Solution {
public:
bool exist(vector<vector<char>>& board, string word) {
int row = board.size(), col = board[0].size();
for (int i = 0; i < row; ++i) {
for (int j = 0; j < col; ++j) {
if (board[i][j] == word[0] && dfs(board, i, j, 0, word)) {
return true;
}
}
}
return false;
}
bool dfs(vector<vector<char>> &board, int i, int j, int len, string word) {
int row = board.size(), col = board[0].size();
if (i < 0 || i >= row || j < 0 || j >= col || word[len] != board[i][j]) return false;
if (len == word.size() - 1) return true;
++len;
char ch = board[i][j];
board[i][j] = '#';
bool ret = dfs(board, i - 1, j, len, word) ||
dfs(board, i + 1, j, len, word) ||
dfs(board, i, j - 1, len, word) ||
dfs(board, i, j + 1, len, word);
board[i][j] = ch; //回溯
return ret;
}
};
另一种写法
使用访问数组表示每个位置是否访问。
时间复杂度:O(n * m)
空间复杂度:O(n * m)
class Solution {
public:
bool exist(vector<vector<char>>& board, string word) {
int row = board.size(), col = board[0].size();
vector<vector<bool>> visited(row, vector<bool>(col));
for (int i = 0; i < row; ++i) {
for (int j = 0; j < col; ++j) {
if (board[i][j] == word[0] && dfs(board, i, j, 0, word, visited)) {
return true;
}
}
}
return false;
}
bool dfs(vector<vector<char>> &board, int i, int j, int len, string word, vector<vector<bool>> &visited) {
int row = board.size(), col = board[0].size();
if (i < 0 || i >= row || j < 0 || j >= col || visited[i][j] || word[len] != board[i][j]) return false;
if (len == word.size() - 1) return true;
++len;
visited[i][j] = true;
bool ret = dfs(board, i - 1, j, len, word, visited) ||
dfs(board, i + 1, j, len, word, visited) ||
dfs(board, i, j - 1, len, word, visited) ||
dfs(board, i, j + 1, len, word, visited);
visited[i][j] = false; //回溯
return ret;
}
};