bzoj4503 两个串
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4503
【题解】
我们设匹配函数f = (a[i]-b[i])^2*b[i]
那么展开f,做卷积就能得出f的值了
对于t[i]=='?',b[i]=0,显然当f=0表示匹配,那么直接FFT即可。
我记得有道类似的题,两串都有通配符匹配,就把f改成(a[i]-b[i])^2a[i]b[i]就ok了。
# include <math.h> # include <stdio.h> # include <string.h> # include <algorithm> // # include <bits/stdc++.h> using namespace std; typedef long long ll; typedef long double ld; typedef unsigned long long ull; const int M = 5e5 + 10; const int mod = 1e9+7; const double pi = acos(-1.0); # define RG register # define ST static struct cp { double x, y; cp() {} cp(double x, double y) : x(x), y(y) {} friend cp operator +(cp a, cp b) { return cp(a.x+b.x, a.y+b.y); } friend cp operator -(cp a, cp b) { return cp(a.x-b.x, a.y-b.y); } friend cp operator *(cp a, cp b) { return cp(a.x*b.x-a.y*b.y, a.x*b.y+a.y*b.x); } }; char str[M]; int S[M], T[M]; int n1, n2; namespace FFT { const int M = 6e5 + 10; cp w[2][M]; int n, lst[M]; inline void init(int _n) { n = 1; while(n < _n) n <<= 1; for (int i=0; i<n; ++i) w[0][i] = cp(cos(pi*2/n*i), sin(pi*2/n*i)), w[1][i] = cp(w[0][i].x, -w[0][i].y); int len = 1; while((1<<len) < n) len ++; for (int i=0; i<n; ++i) { int t = 0; for (int j=0; j<len; ++j) if(i&(1<<j)) t |= (1<<(len-j-1)); lst[i] = t; } } inline void DFT(cp *a, int op) { cp *o = w[op]; for (int i=0; i<n; ++i) if(i < lst[i]) swap(a[i], a[lst[i]]); for (int len=2; len<=n; len<<=1) { int m = len>>1; for (cp *p = a; p != a+n; p+=len) { for (int k=0; k<m; ++k) { cp t = o[n/len*k] * p[k+m]; p[k+m] = p[k] - t; p[k] = p[k] + t; } } } if(op == 1) { for (int i=0; i<n; ++i) a[i].x = a[i].x/(double)n, a[i].y = a[i].y/(double)n; } } } cp a[M], b[M], c[M]; double cnt = 0; int ans[M], ansn = 0; int main() { scanf("%s", str); n1 = strlen(str); for (int i=0; i<n1; ++i) S[i] = str[i] - 'a' + 1; scanf("%s", str); n2 = strlen(str); for (int i=0; i<n2; ++i) { if(str[i] == '?') T[i] = 0; else T[i] = str[i] - 'a' + 1; } int m = n1 + n2 - 1; FFT::init(m); for (int i=0; i<FFT::n; ++i) a[i].x = a[i].y = b[i].x = b[i].y = 0; for (int i=0; i<n1; ++i) a[i].x = S[i]*S[i]; for (int i=0; i<n2; ++i) { int pos = n2 - 1 - i; b[pos].x = T[i]; } FFT::DFT(a, 0); FFT::DFT(b, 0); cnt = 0; for (int i=0; i<FFT::n; ++i) c[i] = a[i] * b[i]; for (int i=0; i<FFT::n; ++i) a[i].x = a[i].y = b[i].x = b[i].y = 0; for (int i=0; i<n1; ++i) a[i].x = S[i]*2; for (int i=0; i<n2; ++i) { int pos = n2 - 1 - i; b[pos].x = T[i]*T[i]; cnt = cnt + T[i]*T[i]*T[i]; } FFT::DFT(a, 0); FFT::DFT(b, 0); for (int i=0; i<FFT::n; ++i) c[i] = c[i] - a[i] * b[i]; FFT::DFT(c, 1); for (int i=0; i<=n1-n2; ++i) if(int(c[n2-1+i].x + cnt + 0.5) == 0) ans[++ansn] = i; printf("%d\n", ansn); for (int i=1; i<=ansn; ++i) printf("%d\n", ans[i]); return 0; }