bzoj4128 Matrix
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4128
【题解】
矩阵版本的BSGS。
至于如何不需要求逆,详见:http://www.cnblogs.com/galaxies/p/bzoj2480.html
# include <map> # include <math.h> # include <stdio.h> # include <string.h> # include <iostream> # include <algorithm> // # include <bits/stdc++.h> using namespace std; typedef long long ll; typedef long double ld; typedef unsigned long long ull; const int M = 5e5 + 10; # define RG register # define ST static int n, mod; struct matrix { int n, a[72][72]; inline void init(int _n) { n = _n; memset(a, 0, sizeof a); } inline void set(int _n) { n = _n; for (int i=1; i<=n; ++i) for (int j=1; j<=n; ++j) scanf("%d", &a[i][j]); } friend matrix operator * (matrix a, matrix b) { matrix c; c.init(a.n); for (int i=1; i<=a.n; ++i) for (int j=1; j<=a.n; ++j) for (int k=1; k<=a.n; ++k) { c.a[i][j] += 1ll * a.a[i][k] * b.a[k][j] % mod; if(c.a[i][j] >= mod) c.a[i][j] -= mod; } return c; } friend matrix operator ^ (matrix a, int b) { matrix c; c.init(a.n); for (int i=1; i<=a.n; ++i) c.a[i][i] = 1; while(b) { if(b&1) c = c * a; a = a * a; b >>= 1; } return c; } friend bool operator == (matrix a, matrix b) { for (int i=1; i<=a.n; ++i) for (int j=1; j<=a.n; ++j) if(a.a[i][j] != b.a[i][j]) return 0; return 1; } inline ull ghash() { ull ret = 0; for (int i=1; i<=n; ++i) for (int j=1; j<=n; ++j) ret = ret * 20001130ull + a[i][j]; return ret; } }A, B; map<ull, int> mp; inline int BSGS(int P) { mp.clear(); int m = ceil(sqrt(1.0 * P)); matrix t = B; ull tem; for (int i=0; i<m; ++i) { mp[t.ghash()] = i; t = t * A; } matrix g = A^m; t = g; for (int i=1; i<=m+1; ++i) { tem = t.ghash(); if(mp.count(tem)) return i * m - mp[tem]; t = t * g; } return -1; } int main() { cin >> n >> mod; A.set(n); B.set(n); cout << BSGS(mod) << endl; return 0; }