Akka源码分析-Remote-网络链接
上一篇博客中,我们分析了Akka remote模式下消息发送的过程,但细心的读者一定发现没有介绍网络相关初始化、创建链接、释放链接的过程,本文就介绍一下相关的内容。
网络初始化就离不开ActorSystem的初始化,毕竟ActorSystem初始化之后就可以创建Actor并发送远程消息了。在ActorSystem初始化时,调用了RemoteActorRefProvider的init函数,init创建了Remoting这个RemoteTransport,并调用了start,而RemoteTransport作用是什么呢?
/** * INTERNAL API * * The remote transport is responsible for sending and receiving messages. * Each transport has an address, which it should provide in * Serialization.currentTransportInformation (thread-local) while serializing * actor references (which might also be part of messages). This address must * be available (i.e. fully initialized) by the time the first message is * received or when the start() method returns, whatever happens first. */ private[akka] abstract class RemoteTransport(val system: ExtendedActorSystem, val provider: RemoteActorRefProvider)
transport一般用来做网络传输层,负责收发消息。每个transport有一个本地address与之绑定,这个address一般就是我们配置的remote监听的本地地址(或者端口随机的本地地址)。
Remoting.start我们有分析过,简单来说就是创建了EndpointManager对象,并发送Listen消息等待返回,listen结束后发送StartupFinished消息。那么网络初始化(或绑定)的代码应该就是在Listen消息的处理过程中了,处理Listen消息时,调用了listen函数,这个之前也分析到过。
private def listens: Future[Seq[(AkkaProtocolTransport, Address, Promise[AssociationEventListener])]] = { /* * Constructs chains of adapters on top of each driver as given in configuration. The resulting structure looks * like the following: * AkkaProtocolTransport <- Adapter <- ... <- Adapter <- Driver * * The transports variable contains only the heads of each chains (the AkkaProtocolTransport instances). */ val transports: Seq[AkkaProtocolTransport] = for ((fqn, adapters, config) ← settings.Transports) yield { val args = Seq(classOf[ExtendedActorSystem] → context.system, classOf[Config] → config) // Loads the driver -- the bottom element of the chain. // The chain at this point: // Driver val driver = extendedSystem.dynamicAccess .createInstanceFor[Transport](fqn, args).recover({ case exception ⇒ throw new IllegalArgumentException( s"Cannot instantiate transport [$fqn]. " + "Make sure it extends [akka.remote.transport.Transport] and has constructor with " + "[akka.actor.ExtendedActorSystem] and [com.typesafe.config.Config] parameters", exception) }).get // Iteratively decorates the bottom level driver with a list of adapters. // The chain at this point: // Adapter <- ... <- Adapter <- Driver val wrappedTransport = adapters.map { TransportAdaptersExtension.get(context.system).getAdapterProvider }.foldLeft(driver) { (t: Transport, provider: TransportAdapterProvider) ⇒ // The TransportAdapterProvider will wrap the given Transport and returns with a wrapped one provider.create(t, context.system.asInstanceOf[ExtendedActorSystem]) } // Apply AkkaProtocolTransport wrapper to the end of the chain // The chain at this point: // AkkaProtocolTransport <- Adapter <- ... <- Adapter <- Driver new AkkaProtocolTransport(wrappedTransport, context.system, new AkkaProtocolSettings(conf), AkkaPduProtobufCodec) } // Collect all transports, listen addresses and listener promises in one future Future.sequence(transports.map { transport ⇒ transport.listen map { case (address, listenerPromise) ⇒ (transport, address, listenerPromise) } }) }
我们来着重分析下listen函数,它读取了settings.Transports并为之创建了对应的AkkaProtocolTransport对象,settings.Transports是什么呢?
val Transports: immutable.Seq[(String, immutable.Seq[String], Config)] = transportNames.map { name ⇒ val transportConfig = transportConfigFor(name) ( transportConfig.getString("transport-class"), immutableSeq(transportConfig.getStringList("applied-adapters")).reverse, transportConfig) } val Adapters: Map[String, String] = configToMap(getConfig("akka.remote.adapters")) private def transportNames: immutable.Seq[String] = immutableSeq(getStringList("akka.remote.enabled-transports"))
其实就是transport-class,applied-adapters,transportConfig三元组的seq。通过源码中的reference.conf,知道transport-class的值默认是akka.remote.transport.netty.NettyTransport,applied-adapters为空。
# The class given here must implement the akka.remote.transport.Transport # interface and offer a public constructor which takes two arguments: # 1) akka.actor.ExtendedActorSystem # 2) com.typesafe.config.Config transport-class = "akka.remote.transport.netty.NettyTransport" # Transport drivers can be augmented with adapters by adding their # name to the applied-adapters list. The last adapter in the # list is the adapter immediately above the driver, while # the first one is the top of the stack below the standard # Akka protocol applied-adapters = []
NettyTransport我们应该知道具体是做啥的了吧,就是用来具体创建链接、监听链接状态,收发消息的。另外adapters默认为空,所以这段for代码,就是加载了transport-class对应类的实例,然后把它作为参数传给了AkkaProtocolTransport。由于可以配置多个transport并监听不同的地址,所以这里是一个seq,不过默认只有一个。
listen函数的最后一行调用了所有transport的listen函数,并返回transport/address/listenerPromise三元组seq。
/** * Implementation of the Akka protocol as a Transport that wraps an underlying Transport instance. * * Features provided by this transport are: * - Soft-state associations via the use of heartbeats and failure detectors * - Secure-cookie handling * - Transparent origin address handling * - pluggable codecs to encode and decode Akka PDUs */ private[remote] class AkkaProtocolTransport( wrappedTransport: Transport, private val system: ActorSystem, private val settings: AkkaProtocolSettings, private val codec: AkkaPduCodec) extends ActorTransportAdapter(wrappedTransport, system)
AkkaProtocolTransport其实是对底层协议的代理、封装,并提供其他一些特性,例如心跳和失败检测,编解码插件等。那AkkaProtocolTransport的listen在哪里实现呢?
override def listen: Future[(Address, Promise[AssociationEventListener])] = { val upstreamListenerPromise: Promise[AssociationEventListener] = Promise() for { (listenAddress, listenerPromise) ← wrappedTransport.listen // Enforce ordering between the signalling of "listen ready" to upstream // and initialization happening in interceptListen _ ← listenerPromise.tryCompleteWith(interceptListen(listenAddress, upstreamListenerPromise.future)).future } yield (augmentScheme(listenAddress), upstreamListenerPromise) }
通过它的继承关系我们找到了AbstractTransportAdapter,其实也就是调用wrappedTransport的listen,那不就是在调用NettyTransport的listen么?
override def listen: Future[(Address, Promise[AssociationEventListener])] = { for { address ← addressToSocketAddress(Address("", "", settings.BindHostname, settings.BindPortSelector)) } yield { try { val newServerChannel = inboundBootstrap match { case b: ServerBootstrap ⇒ b.bind(address) case b: ConnectionlessBootstrap ⇒ b.bind(address) } // Block reads until a handler actor is registered newServerChannel.setReadable(false) channelGroup.add(newServerChannel) serverChannel = newServerChannel addressFromSocketAddress(newServerChannel.getLocalAddress, schemeIdentifier, system.name, Some(settings.Hostname), if (settings.PortSelector == 0) None else Some(settings.PortSelector)) match { case Some(address) ⇒ addressFromSocketAddress(newServerChannel.getLocalAddress, schemeIdentifier, system.name, None, None) match { case Some(address) ⇒ boundTo = address case None ⇒ throw new NettyTransportException(s"Unknown local address type [${newServerChannel.getLocalAddress.getClass.getName}]") } localAddress = address associationListenerPromise.future.foreach { _ ⇒ newServerChannel.setReadable(true) } (address, associationListenerPromise) case None ⇒ throw new NettyTransportException(s"Unknown local address type [${newServerChannel.getLocalAddress.getClass.getName}]") } } catch { case NonFatal(e) ⇒ { log.error("failed to bind to {}, shutting down Netty transport", address) try { shutdown() } catch { case NonFatal(e) ⇒ } // ignore possible exception during shutdown throw e } } } }
def addressToSocketAddress(addr: Address): Future[InetSocketAddress] = addr match { case Address(_, _, Some(host), Some(port)) ⇒ Future { blocking { new InetSocketAddress(InetAddress.getByName(host), port) } } case _ ⇒ Future.failed(new IllegalArgumentException(s"Address [$addr] does not contain host or port information.")) }
简单来说就是根据address配置去创建一个InetSocketAddress并进行绑定、创建chennel等其他网络初始化。
至此EndpointManager对Listen消息处理完毕,就是初始化网络状态,进行监听,由于最后还收到了StartupFinished,所以EndpointManager进入了accepting状态。
case StartupFinished ⇒ context.become(accepting)
EndpointManager.accepting之前只分析了对Send消息的处理,其实还有一个非常重要的消息处理过程:接收连接请求、并创建链接。也就是对InboundAssociation消息的处理。那InboundAssociation是如何产生的呢?这还需要回过头分析NettyTransport。其中有一个字段,在listen中也用到了:inboundBootstrap
private val inboundBootstrap: Bootstrap = settings.TransportMode match { case Tcp ⇒ setupBootstrap(new ServerBootstrap(serverChannelFactory), serverPipelineFactory) case Udp ⇒ setupBootstrap(new ConnectionlessBootstrap(serverChannelFactory), serverPipelineFactory) }
根据mode判断创建哪种类型的Bootstrap。
val TransportMode: Mode = getString("transport-protocol") match { case "tcp" ⇒ Tcp case "udp" ⇒ Udp case unknown ⇒ throw new ConfigurationException(s"Unknown transport: [$unknown]") }
很显然是创建ServerBootstrap。此过程中还传入了一个非常关键的对象:serverPipelineFactory。
private val serverPipelineFactory: ChannelPipelineFactory = new ChannelPipelineFactory { override def getPipeline: ChannelPipeline = { val pipeline = newPipeline if (EnableSsl) pipeline.addFirst("SslHandler", sslHandler(isClient = false)) val handler = if (isDatagram) new UdpServerHandler(NettyTransport.this, associationListenerPromise.future) else new TcpServerHandler(NettyTransport.this, associationListenerPromise.future, log) pipeline.addLast("ServerHandler", handler) pipeline } }
根据上下文以及netty基础概念得知,ChannelPipelineFactory,而getPipeline中addLast函数添加了一个非常重要的handler:TcpServerHandler。
private[remote] class TcpServerHandler(_transport: NettyTransport, _associationListenerFuture: Future[AssociationEventListener], val log: LoggingAdapter) extends ServerHandler(_transport, _associationListenerFuture) with TcpHandlers { override def onConnect(ctx: ChannelHandlerContext, e: ChannelStateEvent): Unit = initInbound(e.getChannel, e.getChannel.getRemoteAddress, null) }
TcpServerHandler在OnConnect时会调用initInbound。
final protected def initInbound(channel: Channel, remoteSocketAddress: SocketAddress, msg: ChannelBuffer): Unit = { channel.setReadable(false) associationListenerFuture.foreach { listener ⇒ val remoteAddress = NettyTransport.addressFromSocketAddress(remoteSocketAddress, transport.schemeIdentifier, transport.system.name, hostName = None, port = None).getOrElse( throw new NettyTransportException(s"Unknown inbound remote address type [${remoteSocketAddress.getClass.getName}]")) init(channel, remoteSocketAddress, remoteAddress, msg) { listener notify InboundAssociation(_) } } }
initInbound会调用init函数,init源码如下:
final protected def init(channel: Channel, remoteSocketAddress: SocketAddress, remoteAddress: Address, msg: ChannelBuffer)( op: (AssociationHandle ⇒ Any)): Unit = { import transport._ NettyTransport.addressFromSocketAddress(channel.getLocalAddress, schemeIdentifier, system.name, Some(settings.Hostname), None) match { case Some(localAddress) ⇒ val handle = createHandle(channel, localAddress, remoteAddress) handle.readHandlerPromise.future.foreach { listener ⇒ registerListener(channel, listener, msg, remoteSocketAddress.asInstanceOf[InetSocketAddress]) channel.setReadable(true) } op(handle) case _ ⇒ NettyTransport.gracefulClose(channel) } }
init简单来说就是创建一个handle,并调用op(handle),联系上下文我们知道op应该就是“{ listener notify InboundAssociation(_) }”这段代码。就是用InboundAssociation封装handle,并调用listener的notify!!!我们好像找到了InboundAssociation消息的来源!!!那listener究竟是在哪里赋值的呢?
这个就比较曲折了,具体过程不再展示,只说结果。就是在listens成功之后,给self发送了一个ListensResult消息,收到消息后,有一段代码是在赋值:promise.success(ActorAssociationEventListener(self))。这里的promise就是上面代码中的listener。
case Listen(addressesPromise) ⇒ listens map { ListensResult(addressesPromise, _) } recover { case NonFatal(e) ⇒ ListensFailure(addressesPromise, e) } pipeTo self case ListensResult(addressesPromise, results) ⇒ transportMapping = results.groupBy { case (_, transportAddress, _) ⇒ transportAddress } map { case (a, t) if t.size > 1 ⇒ throw new RemoteTransportException(s"There are more than one transports listening on local address [$a]", null) case (a, t) ⇒ a → t.head._1 } // Register to each transport as listener and collect mapping to addresses val transportsAndAddresses = results map { case (transport, address, promise) ⇒ promise.success(ActorAssociationEventListener(self)) transport → address } addressesPromise.success(transportsAndAddresses)
ActorAssociationEventListener源码非常简单,就是把收到的消息发送给actor,而这里的actor就是上面代码中的self,其实就是EndpointManager。
/** * Class to convert ordinary [[akka.actor.ActorRef]] instances to an AssociationEventListener. The adapter will * forward event objects as messages to the provided ActorRef. * @param actor */ final case class ActorAssociationEventListener(actor: ActorRef) extends AssociationEventListener { override def notify(ev: AssociationEvent): Unit = actor ! ev }
至此我们就回到了EndpointManager中对InboundAssociation消息的处理,handleInboundAssociation就不再详细分析,这应该就是建立连接的过程。至此我们就可以正常的发送消息了,毕竟本地服务的socket已经与远程ActorSystem对应的socket建立了链接。但远程ActorSystem网络对象收到消息之后如何分发给指定的Actor呢?我们下篇博客继续分析。