Akka源码分析-Actor发消息(续)
上一篇博客我们分析道mailbox同时也是一个forkjointask,run方法中,调用了processMailbox处理一定数量的消息,然后最终调用dispatcher的registerForExecution重新进行线程调度,达到循环处理邮箱消息的功能。接下来我们分析一下processMailbox函数的功能。
/** * Process the messages in the mailbox */ @tailrec private final def processMailbox( left: Int = java.lang.Math.max(dispatcher.throughput, 1), deadlineNs: Long = if (dispatcher.isThroughputDeadlineTimeDefined == true) System.nanoTime + dispatcher.throughputDeadlineTime.toNanos else 0L): Unit = if (shouldProcessMessage) { val next = dequeue() if (next ne null) { if (Mailbox.debug) println(actor.self + " processing message " + next) actor invoke next if (Thread.interrupted()) throw new InterruptedException("Interrupted while processing actor messages") processAllSystemMessages() if ((left > 1) && ((dispatcher.isThroughputDeadlineTimeDefined == false) || (System.nanoTime - deadlineNs) < 0)) processMailbox(left - 1, deadlineNs) } }
上面是processMailbox的代码,很明显这是一个尾递归,它一次性处理dispatcher.throughput个消息,并在dispatcher.throughputDeadlineTime时间内退出此次递归。源码也比较简单,大致的处理过程就是:队列取出消息,调用actor的invoke函数,处理所有系统消息,如果还有剩余消息或者未达到时间长度限制,则继续下一条消息处理。
代码虽然简单,但有几个隐含的点,需要说明。这是一个尾递归,且在线程池分配的某个线程中执行,则可以确保,actor处理此次批量消息时,一定是在某一个线程中,不会出现并行的情况。且该函数处理完毕后,会再被线程池进行调度,则下一次的线程跟此次应该不同。另外处理完每一条消息后都会把系统消息处理完毕,也就是说系统消息的优先级非常高。
override final def run(): Unit = { try { if (!isClosed) { //Volatile read, needed here processAllSystemMessages() //First, deal with any system messages processMailbox() //Then deal with messages } } finally { setAsIdle() //Volatile write, needed here dispatcher.registerForExecution(this, false, false) } }
我们再回到run方法,会发现,没有对异常进行处理。也就是说如果处理用户消息或者系统消息出现异常时,依然会进入下一次调度。我们接下来看一下ActorCell的invoke代码。
//Memory consistency is handled by the Mailbox (reading mailbox status then processing messages, then writing mailbox status final def invoke(messageHandle: Envelope): Unit = { val influenceReceiveTimeout = !messageHandle.message.isInstanceOf[NotInfluenceReceiveTimeout] try { currentMessage = messageHandle if (influenceReceiveTimeout) cancelReceiveTimeout() messageHandle.message match { case msg: AutoReceivedMessage ⇒ autoReceiveMessage(messageHandle) case msg ⇒ receiveMessage(msg) } currentMessage = null // reset current message after successful invocation } catch handleNonFatalOrInterruptedException { e ⇒ handleInvokeFailure(Nil, e) } finally { if (influenceReceiveTimeout) checkReceiveTimeout // Reschedule receive timeout } }
我们暂时先忽略对超时消息的处理,发现invoke最终调用了receiveMessage(msg)。
final def receiveMessage(msg: Any): Unit = actor.aroundReceive(behaviorStack.head, msg)
receiveMessage又转而调用了actor的aroundReceive方法,actor是什么呢?
private[this] var _actor: Actor = _ def actor: Actor = _actor protected def actor_=(a: Actor): Unit = _actor = a
通过定义我们知道这就是一个普通的Actor,追踪到这里终于调用了Actor特质的函数了,但仅仅调用了aroundReceive,而不是我们常见的receive函数。
/** * INTERNAL API. * * Can be overridden to intercept calls to this actor's current behavior. * * @param receive current behavior. * @param msg current message. */ @InternalApi protected[akka] def aroundReceive(receive: Actor.Receive, msg: Any): Unit = { // optimization: avoid allocation of lambda if (receive.applyOrElse(msg, Actor.notHandledFun).asInstanceOf[AnyRef] eq Actor.NotHandled) { unhandled(msg) } }
那就看看aroundReceive的源码喽。通过官方源码说明和代码分析,我们知道这里调用了我们最终定义的receive函数,如果receive没有处理该类型的消息,则调用unhandled。默认情况下unhandled应该会发送给deadletters。
/** * User overridable callback. * <p/> * Is called when a message isn't handled by the current behavior of the actor * by default it fails with either a [[akka.actor.DeathPactException]] (in * case of an unhandled [[akka.actor.Terminated]] message) or publishes an [[akka.actor.UnhandledMessage]] * to the actor's system's [[akka.event.EventStream]] */ def unhandled(message: Any): Unit = { message match { case Terminated(dead) ⇒ throw DeathPactException(dead) case _ ⇒ context.system.eventStream.publish(UnhandledMessage(message, sender(), self)) } }
在invoke方法中,还有一个函数的调用也不得不说:autoReceiveMessage。通过名字我们知道它应该是自动处理的消息,而不需要自己处理。哪些消息不需要我们处理呢?
def autoReceiveMessage(msg: Envelope): Unit = { if (system.settings.DebugAutoReceive) publish(Debug(self.path.toString, clazz(actor), "received AutoReceiveMessage " + msg)) msg.message match { case t: Terminated ⇒ receivedTerminated(t) case AddressTerminated(address) ⇒ addressTerminated(address) case Kill ⇒ throw ActorKilledException("Kill") case PoisonPill ⇒ self.stop() case sel: ActorSelectionMessage ⇒ receiveSelection(sel) case Identify(messageId) ⇒ sender() ! ActorIdentity(messageId, Some(self)) } }
Terminated、AddressTerminated、Kill、PoisonPill、ActorSelectionMessage、Identify。怎么样这几个消息是不是比较眼熟呢。当然我们这里就不再展开分析了,不过读者如果对Terminated、AddressTerminated、Kill、PoisonPill几个消息的区别感兴趣的话,可以继续研究一下对应的处理过程。有些是抛异常,有些是调函数,还是有一些区别的。
另外在invoke方法中,还有一个字段我们也不应该忽略:currentMessage。通过其名称以及相关的代码逻辑,我们知道这仅仅是标志当前消息。那么它有什么用呢?
final def sender(): ActorRef = currentMessage match { case null ⇒ system.deadLetters case msg if msg.sender ne null ⇒ msg.sender case _ ⇒ system.deadLetters }
翻了一下源码,最终定位到以上代码。sender()是不是比较眼熟呢?currentMessage是为了给sender()返回对应的值的。不过有几点需要注意。currentMessage只是一个“临时”值,也就意味着sender()也会是一个“临时”值。临时的意思是在此次消息处理结束之后,对应的currentMessage会变化,sender返回的值也会变化。这也就是告诉读者,sender函数返回的值只有在此次消息处理过程中有效,且只在当前线程有效。如果消息处理时,出现了Future代码块,则在Future代码块内部,不要再调用sender函数!
补充:其实细心的读者一定会发现sender是一个闭包。简单来说闭包是一个函数,它的返回值取决于此函数之外声明一个或多个变量的值。sender的返回值取决于currentMessage变量。
invoke方法中还有一段代码同样很重要:handleNonFatalOrInterruptedException。这段代码逻辑比较简单,大概是先中止当前的消息处理,然后中止children的消息处理,最后发送一个系统消息给监督者(也就是父actor)。如果中止当前或children消息过程中也出现了异常,则就是stop所有子actor了。
final def handleInvokeFailure(childrenNotToSuspend: immutable.Iterable[ActorRef], t: Throwable): Unit = { // prevent any further messages to be processed until the actor has been restarted if (!isFailed) try { suspendNonRecursive() // suspend children val skip: Set[ActorRef] = currentMessage match { case Envelope(Failed(_, _, _), child) ⇒ { setFailed(child); Set(child) } case _ ⇒ { setFailed(self); Set.empty } } suspendChildren(exceptFor = skip ++ childrenNotToSuspend) t match { // tell supervisor case _: InterruptedException ⇒ // ➡➡➡ NEVER SEND THE SAME SYSTEM MESSAGE OBJECT TO TWO ACTORS ⬅⬅⬅ parent.sendSystemMessage(Failed(self, new ActorInterruptedException(t), uid)) case _ ⇒ // ➡➡➡ NEVER SEND THE SAME SYSTEM MESSAGE OBJECT TO TWO ACTORS ⬅⬅⬅ parent.sendSystemMessage(Failed(self, t, uid)) } } catch handleNonFatalOrInterruptedException { e ⇒ publish(Error(e, self.path.toString, clazz(actor), "emergency stop: exception in failure handling for " + t.getClass + Logging.stackTraceFor(t))) try children foreach stop finally finishTerminate() } }
到此为止,我们就把消息的处理过程分析完毕了。但这只是本地actor的大致处理逻辑,并不涉及remote和cluster的处理过程。还有dispatch对线程的调度也并没有深入分析,后面我会根据需要深入分析这些技术细节。